Exercise 1:

a) Show that Claim 1 and Claim 2 at page 161 of the lecture notes imply the lower bound \(\frac{1}{2} (\frac{m}{s-r})^{s/2} \).

b) Prove Corollary 4.2 of the lecture.

Exercise 2:

Develop an algorithm which computes for each node \(g \) of a given monotone network \(\beta \) \(\text{DNF}_\beta(g) \) and \(\text{CNF}_\beta(g) \).

Exercise 3:

a) Describe a CNF/DNF-switch.

b) Let \(\alpha \) be a DNF-formula (CNF-formula). Prove that the formula \(\gamma \) obtained by a DNF/CNF-switch (CNF/DNF-switch) computes the same function as \(\alpha \).

Exercise 4:

Consider the lower bound proof for the clique function which uses DNF/CNF-approximators.

a) Show that the number of inputs in \(T_1 \) for which the approximator \(D_g^r \) could introduce an error is bounded by \(\binom{m-r}{s-r} \left(\frac{m}{4s} \right)^r \).

b) Show that the number of inputs in \(T_0 \) for which the approximator \(C_g^k \) could introduce an error is bounded by \((\frac{m}{2})^k (s-1)^{m-k} \).

c) Show that either \(C_{g_0}^k \) computes the constant function one or \(C_{g_0}^k \) computes the value of at least half of the inputs in \(T_1 \) incorrectly.

d) Prove Theorem 5.1 of the lecture.