Exercise 1: (4 Points)
Recall the Greedy-by-Value and Greedy-by-Sqrt-Value-Density algorithms for single-minded CAs of lecture 12. Let us analyse another greedy algorithm that looks as follows.

Greedy-by-Value-Density

- Re-order the bids such that \(\frac{b_1^*}{|S_1^*|} \geq \frac{b_2^*}{|S_2^*|} \geq \cdots \geq \frac{b_n^*}{|S_n^*|} \).
- Initialize the set of winning bidders to \(W = \emptyset \).
- For \(i = 1 \) to \(n \) do: If \(S_i^* \cap \bigcup_{j \in W} S_j^* = \emptyset \), then \(W = W \cup \{i\} \).

Let \(d = \max_{i \in N} |S_i^*| \). Show that the given algorithm yields a \(d \)-approximation.

Exercise 2: (3 Points)
Recall the auction of \(k \) identical items from Exercise Set 6. Each bidder can acquire at most one of the items. If bidder \(i \) gets one of the items, she has a value of \(v_i \). Otherwise, that is, if she does not get an item, she has a value of 0. Make use of the VCG-results from the lecture in order to design a truthful mechanism for this auction. For this purpose, explicitly state the function \(f \) and calculate the payment rule \(p \).

Exercise 3: (3 Points)
Consider a single-parameter problem and let \(f \) be the function that maximizes \(\sum_i b_i x_i \) among all \(x \in X \) (declared welfare). Show that \(f \) is monotone.

Exercise 4: (4 Points)
As seen in the lecture, let \(f: V \to X \) be a function that maximizes declared welfare, i.e., \(f(b) \in \arg \max_{x \in X} \sum_i b_i(x) \) for all \(b \in V \). For each \(i \), let \(h_i \) be an arbitrary function \(b_{-i} \mapsto h_i(b_{-i}) \) which does not depend on \(b_i \). We define a mechanism \(M = (f, p) \) by setting

\[
p_i(b) = h_i(b_{-i}) - \sum_{j \neq i} b_j(f(b)) .
\]

Prove that \(M \) is a truthful mechanism.
Exercise 5: \hspace{1cm} (4+2 Points)

Consider the following *Procurement Auction*. It’s being attempted to buy a certain item. There are \(n\) vendors who are able to manufacture the wanted item. Vendor \(i\) incurs a cost of \(c_i\) for crafting the item. Now, the vendors are asked to state their costs for crafting the item and a vendor with lowest cost shall be chosen. The latter potentially gets a payment for it. The stated problem can be formalized by the general model of the lecture: Each vendor \(i\) is interpreted as a bidder who has negative valuation \(v_i\), if he/she is chosen to craft the item, that is, \(v_i(x) = -c_i\), if \(i\) is chosen in \(x\).

(a) The results of the lecture concerning VCG are applicable in this situation. Make use of them in order to state a truthful mechanism. Note that this mechanism won’t be *individually rational*.

(b) Make use of the results from Exercise 4 in order to modify the mechanism to be individually rational.