1 Last Lecture

Let us first summarize what we have seen in the last lecture. We consider an online learning setting, in which our algorithm has \(n \) choices in each step, each choice corresponds to an expert.

First an adversary chooses a sequence of cost vectors \(\ell(1), \ldots, \ell(T) \). Then, in step \(t \), the algorithm first chooses one of the \(n \) experts (possibly in a randomized way), which we call \(I_t \). Then the algorithm gets to know the entire vector \(\ell(t) \).

If \(\ell_i(t) \in [0, \rho] \) we showed that Multiplicative Weights (MW) is a randomized algorithm (with parameter \(\eta \)) that guarantees

\[
\mathbb{E} \left[\sum_{t=1}^{T} \ell_{I_t}^{(t)} \right] \leq (1 + \eta) \min_i \sum_{t=1}^{T} \ell_i^{(t)} + \frac{\ln n}{\eta} .
\]

By setting \(\eta = \sqrt{\frac{\ln n}{T}} \), we get

\[
\mathbb{E} \left[\sum_{t=1}^{T} \ell_{I_t}^{(t)} \right] \leq \min_i \sum_{t=1}^{T} \ell_i^{(t)} + \sqrt{\frac{\ln n}{T}} \min_i \sum_{t=1}^{T} \ell_i^{(t)} + \rho \sqrt{T \ln n} \leq \min_i \sum_{t=1}^{T} \ell_i^{(t)} + 2 \rho \sqrt{T \ln n} .
\]

The quantity \(\text{Regret}^{(T)} = \mathbb{E} \left[\sum_{t=1}^{T} \ell_{I_t}^{(t)} \right] - \min_i \sum_{t=1}^{T} \ell_i^{(t)} \) is called the (external) regret on the sequence. Multiplicative Weights guarantees that the regret is always bounded by \(2 \rho \sqrt{T \ln n} \).

An algorithm that guarantees \(\text{Regret}^{(T)} = o(T) \) is called no regret because asymptotically the algorithm does as well as the best expert.

2 Today: Partial Feedback (Adversarial Multi-Armed Bandits)

Today, we consider again the setting that we can choose between \(n \) actions in every step. An adversary determines the sequence of cost vectors \(\ell(1), \ldots, \ell(T) \) in advance and it is unknown to the algorithm. We assume that \(\ell_i(t) \in [0, 1] \) for all \(i \) and \(t \).

In step \(t \), the algorithm chooses one of the \(n \) actions at random by defining probabilities \(p_1^{(t)}, \ldots, p_n^{(t)} \). The algorithm’s choice in step \(t \) is denoted by \(I_t \). The algorithm gets to know \(\ell_{I_t}^{(t)} \). The other entries of the cost vector remain unknown.

In practice often the cost or reward of alternative actions are not revealed. For example, if we run a news website, we might want to choose article headlines so as to maximize the number of clicks or shares. For each user that arrives, we can only try out one particular choice and we do not get to know how others would have performed.

Again, we are interested in a no-regret algorithm, that is the algorithm should ensure that for all sequences \(\ell(1), \ldots, \ell(T) \), the regret

\[
\text{Regret}^{(T)} = \mathbb{E} \left[\sum_{t=1}^{T} \ell_{I_t}^{(t)} \right] - \min_i \sum_{t=1}^{T} \ell_i^{(t)}
\]

grows sublinearly, that is, \(\text{Regret}^{(T)} = o(T) \).
3 A Black-Box Transformation

We will now get to know a black-box transformation to solve the bandits setting with an algorithm for the experts setting. It is important to note here that this is not the optimal algorithm and analysis in terms of the regret. However, the optimal one uses exactly these ideas and is just a little more careful but more difficult.

The idea is as follows: We run an experts algorithm like Multiplicative Weights and we only give it the feedback that we have in an ingenious way. Suppose we are in round \(t \) and the algorithm chooses to play expert \(i \) with probability \(p_i^{(t)} \). We do the same and get to know \(\ell_i^{(t)} \), \(\ell_i^{(t)} \) for \(i \neq I_t \) is unknown to us.

The question is what feedback to return to the expert algorithm. Ideally we would want to return \(\tilde{\ell}_i^{(t)} \) to the experts algorithm with \(\rho = \frac{n_\gamma}{\gamma} \). Note that, by our assumption \(\tilde{\ell}_i^{(t)} \) can be arbitrarily small, so \(\tilde{\ell}_i^{(t)} \) is unbounded. Our algorithm, however, only works on cost vectors between 0 and \(\rho \). Therefore, we will increase \(p_i^{(t)} \) by a small additive term to keep the numbers bounded.

In step \(t \):

- Get probability vector \(p_i^{(t)} \) from experts algorithm.
- Set \(q_i^{(t)} = (1 - \gamma)p_i^{(t)} + \frac{\gamma}{n} \).
- Choose \(I_t \) based on \(q_i^{(t)} \).
- Return \(\tilde{\ell}_i^{(t)} = \ell_i^{(t)} / p_i^{(t)} \) and \(\tilde{\ell}_i^{(t)} = 0 \) for \(i \neq I_t \) to the experts algorithm with \(\rho = \frac{n_\gamma}{\gamma} \).

Note that, by our assumption \(\tilde{\ell}_i^{(t)} = [0, 1] \), it is guaranteed that \(\tilde{\ell}_i^{(t)} = [0, \rho] \) for \(\rho = \frac{n_\gamma}{\gamma} \).

Theorem 17.1. When using Multiplicative Weights as the experts algorithm, the bandits algorithm guarantees that for any sequence \(\ell^{(1)}, \ldots, \ell^{(T)} \)

\[
E \left[\sum_{t=1}^{T} \ell_t^{(t)} \right] \leq (1 + \eta) \min_{i} \sum_{t=1}^{T} \ell_i^{(t)} + \frac{n \ln n}{\gamma \eta} + \gamma T.
\]

Proof. Let us first fix a choice of \(I_1, \ldots, I_T \). This fixes the sequence \(\tilde{\ell}^{(1)}, \ldots, \tilde{\ell}^{(T)} \) that is given to Multiplicative Weights. What would Multiplicative Weights do on this sequence? It computes probability vectors \(p_i^{(1)}, \ldots, p_i^{(T)} \). These vectors have the property that

\[
\sum_{t=1}^{T} \sum_{i=1}^{n} p_i^{(t)} \tilde{\ell}_i^{(t)} \leq (1 + \eta) \min_{i} \sum_{t=1}^{T} \ell_i^{(t)} + \frac{n \ln n}{\gamma \eta} = (1 + \eta) \min_{i} \sum_{t=1}^{T} \tilde{\ell}_i^{(t)} + \frac{n \ln n}{\gamma \eta}.
\]

As we set \(q_i^{(t)} = (1 - \gamma)p_i^{(t)} + \frac{\gamma}{n} \), we also have

\[
\sum_{t=1}^{T} \sum_{i=1}^{n} q_i^{(t)} \tilde{\ell}_i^{(t)} = (1 - \gamma) \sum_{t=1}^{T} \sum_{i=1}^{n} p_i^{(t)} \tilde{\ell}_i^{(t)} + \frac{\gamma}{n} \sum_{t=1}^{T} \sum_{i=1}^{n} \tilde{\ell}_i^{(t)} \leq (1 + \eta) \min_{i} \sum_{t=1}^{T} \tilde{\ell}_i^{(t)} + \frac{n \ln n}{\gamma \eta} + \gamma \sum_{t=1}^{T} \sum_{i=1}^{n} \tilde{\ell}_i^{(t)}.
\]

So far, we kept \(I_1, \ldots, I_T \) fixed. It is important to remark at this point that only our algorithm produces this “fake” sequence during the run and we tried out what Multiplicative
Weights would do on the sequence. In the next step, we take the expectation over I_1, \ldots, I_T on both sides.

$$E \left[\sum_{t=1}^T \sum_{i=1}^n q_i(t) \tilde{\ell}_i(t) \right] \leq E \left[(1 + \gamma) \min_i \sum_{t=1}^T \tilde{\ell}_i(t) + \frac{n \ln n}{\gamma \eta} + \gamma \sum_{t=1}^T \sum_{i=1}^n \tilde{\ell}_i(t) \right].$$

Note that $E \left[\min_i \sum_{t=1}^T \tilde{\ell}_i(t) \right] \leq \min_i \sum_{t=1}^T E \left[\tilde{\ell}_i(t) \right]$. So, by linearity of expectation

$$\sum_{t=1}^T \sum_{i=1}^n E \left[q_i(t) \tilde{\ell}_i(t) \right] \leq (1 + \gamma) \min_i \sum_{t=1}^T E \left[\tilde{\ell}_i(t) \right] + \frac{n \ln n}{\gamma \eta} + \gamma \sum_{t=1}^T \sum_{i=1}^n E \left[\tilde{\ell}_i(t) \right].$$

This inequality still talks about the fake sequence $\tilde{\ell}(1), \ldots, \tilde{\ell}(T)$ but we want to talk about the real sequence $\ell(1), \ldots, \ell(T)$.

For the term $E \left[\tilde{\ell}_i(t) \right]$ on the right-hand side, this is pretty easy. Let us fix $I_1 = i_1, \ldots, I_{t-1} = i_{t-1}$ arbitrarily. This fixes $q(t)$ and $Pr [I_t = i | I_1, \ldots, I_{t-1}] = q_i(t)$. So

$$E \left[\tilde{\ell}_i(t) \mid I_1 = i_1, \ldots, I_{t-1} = i_{t-1} \right] = q_i(t) \cdot \frac{\ell_i(t)}{q_i(t)} = \ell_i(t)$$

for any choices of i_1, \ldots, i_{t-1}. So, also

$$E \left[\tilde{\ell}_i(t) \right] = \sum_{i_1} \cdots \sum_{i_{t-1}} Pr [I_1 = i_1, \ldots, I_{t-1} = i_{t-1}] E \left[\tilde{\ell}_i(t) \mid I_1 = i_1, \ldots, I_{t-1} = i_{t-1} \right]$$

$$= \sum_{i_1} \cdots \sum_{i_{t-1}} Pr [I_1 = i_1, \ldots, I_{t-1} = i_{t-1}] \ell_i(t) = \ell_i(t).$$

Furthermore, $\sum_{t=1}^T \sum_{i=1}^n E \left[\tilde{\ell}_i(t) \right] = \sum_{t=1}^T \sum_{i=1}^n \ell_i(t) \leq nT$.

For the term $E \left[q_i(t) \tilde{\ell}_i(t) \right]$ on the left-hand side, we have to be a bit more careful because both $q_i(t)$ and $\tilde{\ell}_i(t)$ are random variables, which are correlated in a complicated way. (We defined $\tilde{\ell}_i(t)$ based on $q_i(t)$.) Again, we fix I_1, \ldots, I_{t-1} arbitrarily and, this way, $q_i(t)$ is not random anymore. So, we now get

$$E \left[q_i(t) \tilde{\ell}_i(t) \mid I_1, \ldots, I_{t-1} \right] = q_i(t) E \left[\tilde{\ell}_i(t) \mid I_1, \ldots, I_{t-1} \right] = q_i(t) \ell_i(t).$$

Now, take the expectation over I_1, \ldots, I_{t-1}. Fortunately, $\ell_i(t)$ is not random, therefore

$$E \left[q_i(t) \ell_i(t) \right] = E \left[q_i(t) \ell_i(t) \right] = Pr [I_t = i] \ell_i(t).$$

So, we also have

$$\sum_{t=1}^T \sum_{i=1}^n E \left[q_i(t) \ell_i(t) \right] = \sum_{t=1}^T \sum_{i=1}^n Pr [I_t = i] \ell_i(t) = E \left[\sum_{t=1}^T \ell_i(t) \right].$$

The bound in Theorem 17.1 depends on γ. Note that γ can be thought of balancing off exploration and exploitation. If we set γ to 0, then once an action has turned out to be bad it will rarely be chosen in the future because it is always reported to have high cost. If we set γ
to 1, then we ignore the history when making our decision. The parameter γ has to be chosen carefully so that actions still have a chance to recover (meaning that we explore) but we keep choosing the actions that turned out to be good so far.

If we set $\gamma = \eta = \sqrt{\frac{\ln n}{T}}$, then Theorem 17.1 gives us

$$\mathbb{E}\left[\sum_{t=1}^{T} \ell_i(t)\right] \leq \min_i \sum_{t=1}^{T} \ell_i(t) + \frac{n \ln n}{\gamma \eta} + (\eta + \gamma) T = \min_i \sum_{t=1}^{T} \ell_i(t) + 3(n \ln n)^{1/3}T^{2/3}.$$

So the regret is bounded by $3(n \ln n)^{1/3}T^{2/3}$. As a matter of fact, the same algorithm with different choice of η and γ and only a more careful, but more complex analysis also gives a regret bound of $O(\sqrt{T \ln n})$. Remember that for the experts setting, the bound was $O(\sqrt{T \ln n})$.

4 Unknown Time Horizon

So far, our algorithms assumed that we know the time horizon T. Indeed, with a slight modification, they also work for unknown time horizons.

The modified algorithm works as follows. Phase $k \geq 0$ consists of steps $2^k, \ldots, 2^{k+1} - 1$. So it consists of 2^k steps. At the beginning of a phase, we restart the no-regret algorithm with $T' = 2^k$.

Let us analyze Multiplicative Weights in this construction.

Theorem 17.2. The modified version of Multiplicative Weights has regret $O(\sqrt{T \ln n})$.

Proof. We start $m = \lfloor \log_2 T \rfloor + 1$ phases during T steps. As the last phase might not be complete, we fill up the sequence by $\ell(T+1), \ldots, \ell(2^m - 1)$ with all-zero vectors. This neither changes the cost of a single action nor of the algorithm.

In each phase, we restart the algorithm. Therefore, if P_k are the steps in phase k, we have the regret guarantee

$$\sum_{t \in P_k} \sum_{i=1}^{n} p_i(t) \ell_i(t) \leq \min_i \sum_{t \in P_k} \ell_i(t) + 2\sqrt{|P_k| \ln n}.$$

Now, we take the sum over $k = 0, \ldots, m$ on both sides

$$\sum_{k=0}^{m-1} \sum_{t \in P_k} \sum_{i=1}^{n} p_i(t) \ell_i(t) \leq \sum_{k=0}^{m-1} \min_i \sum_{t \in P_k} \ell_i(t) + 2\sum_{k=0}^{m-1} \sqrt{|P_k| \ln n}$$

The first sum, $\sum_{k=0}^{m} \sum_{t \in P_k} \sum_{i=1}^{n} p_i(t) \ell_i(t)$ is exactly the cost of the algorithm.

For the second sum, we have

$$\sum_{k=0}^{m-1} \min_i \sum_{t \in P_k} \ell_i(t) \leq \min_i \sum_{k=0}^{m-1} \sum_{t \in P_k} \ell_i(t) = L_i^{(T)}.$$

And for the third sum, we use that $|P_k| = 2^k$, which gives

$$2 \sum_{k=0}^{m-1} \sqrt{|P_k| \ln n} = 2\sqrt{\ln n} \sum_{k=0}^{m-1} (\sqrt{2})^k = 2\sqrt{\ln n} (\sqrt{2})^m - 1 = O(\sqrt{T \ln n}).$$

\square