Recall our setting from last time. We have to classify data points from a set X using hypothesis $h : X \to \{-1, 1\}$. The class of all hypotheses is called H. There is a ground truth $f : X \to \{-1, 1\}$ and we are in the realizable case, which means that $f \in H$.

By $\mathcal{H}[m]$ we indicate the maximum number of distinct ways to label m data points from X using different functions in H. A trivial upper bound is $\mathcal{H}[m] \leq 2^m$ but the function can be much smaller.

Given m sample points x_1, \ldots, x_m with labels y_1, \ldots, y_m, the training error of a hypothesis is

$$\text{err}_S(h) := \frac{1}{m} |\{h(x_i) \neq y_i\}|.$$

The true error $\text{err}_D(h)$ of a hypothesis h with respect to a distribution D is

$$\text{err}_D(h) := \mathbb{P}_{X \sim D} [h(X) \neq f(X)].$$

For all choices of $\epsilon > 0$, $\delta > 0$, if we draw m times independently from distribution D such that

$$m \geq \max \left\{ \frac{8}{\epsilon} \cdot \frac{2}{\epsilon} \cdot \log_2 \left(\frac{2\mathcal{H}[2m]}{\delta} \right) \right\}, \quad (1)$$

then with probability at least $1 - \delta$, all $h \in H$ with $\text{err}_S(f) = 0$ have $\text{err}_D(h) < \epsilon$.

Today, we would like to better understand Condition (1). Note that is equivalent to require that

$$\epsilon \geq \max \left\{ \frac{8}{m} \cdot \frac{2}{m} \cdot \frac{1}{m} \log_2 \left(\frac{2\mathcal{H}[2m]}{\delta} \right) \right\}.$$

The question that we are interested in is if the true error $\text{err}_D(h)$ vanishes if we choose larger and larger m. This indeed works out if $\frac{\log_2(\mathcal{H}[2m])}{m}$ converges to 0.

For the trivial bound $\mathcal{H}[m] \leq 2^m$, this is not true. For threshold classifiers on a line, we could show that $\mathcal{H}[m] \leq m + 1$. This is sufficient. More generally, we ask: Is there a point after which $\mathcal{H}[m]$ grows subexponentially?

1 VC Dimension

Today, we will get to know the central notion of VC dimension. It was introduced by Vapnik and Chervonenkis in 1968. The VC dimension of a set of hypotheses H is roughly the point from which $\mathcal{H}[m]$ is smaller than 2^m.

Definition 22.1. A set of hypotheses H shatters a set $S \subseteq X$ if there are hypotheses in H that label S in all possible $2^{|S|}$ ways, that is, $H[S] = 2^{|S|}$.

Definition 22.2. The VC dimension of a set of hypotheses H is the largest size of a set S that is shattered by H, i.e., $\max\{|S| \mid H[S] = 2^{|S|}\}$. If there are sets of unbounded sizes that are shattered then the VC dimension is infinite.

Let us consider a few examples.
Lemma 22.4, we know that on \(S \) end, let \(L \) to Proof of Sauer’s Lemma. Given any set \(x \) they always contain and \(\ell \) empty set is shattered.

Consider a set of data points \(\ell : S \to \{-1, 1\} \). Then \(L \) shatters at least \(|L|\) subsets of \(S \). That is, there are at least \(|L|\) distinct sets \(S' \subseteq S \) such that \(S' \) can be labelled in all \(2^{|S'|} \) different ways using functions from \(L \).

Proof. We prove the claim by induction on \(|L|\). The base case is \(|L| = 1\). In this case, the empty set is shattered.

For the induction step, consider that \(|L| > 1\). In this case, there has to be some \(x \in S \) such that \(\ell(x) = -1 \) for some \(\ell \in L \) and \(\ell'(x) = 1 \) for some \(\ell' \in L \). Let \(L_- = \{\ell \in L \mid \ell(x) = -1\} \) and \(L_+ = \{\ell \in L \mid \ell(x) = 1\} \). Now, apply the induction hypothesis on the sets \(L_- \) and \(L_+ \). Let \(T_- \subseteq 2^S \) and \(T_+ \subseteq 2^S \) denote the shattered sets respectively. By induction hypothesis, we have \(|T_-| \geq L_-\) and \(|T_+| \geq L_+\).

Note that there is no \(S' \in T_- \) or \(S' \in T_+ \) with \(x \in S' \) because the label of \(x \) is always fixed to \(-1\) or \(1\).

All of \(T_- \cup T_+ \) is shattered by \(L \). Additionally, if \(S' \in T_- \cap T_+ \), then \(S' \cup \{x\} \) is also shattered by \(L \) because after assigning \(x \) an arbitrary label we can still assign all possible labels to the \(S' \) using a labelling in \(L \). All sets constructed this way are not contained in \(T_- \) or \(T_+ \) because they always contain \(x \).

Consequently, the number of shattered sets is at least

\[
|T_- \cup T_+| + |T_- \cap T_+| = |T_-| + |T_+| - |T_- \cap T_+| + |T_- \cap T_+| = |T_-| + |T_+| \geq |L_-| + |L_+| = |L| .
\]

Proof of Sauer’s Lemma. Given any set \(S \subseteq X \) of size \(m \), we would like to bound \(\mathcal{H}[S] \). To this end, let \(L \) be the set of possible labelings \(\ell : S \to \{-1, 1\} \) applying different hypotheses from \(\mathcal{H} \) on \(S \). Formally, \(L = \{h|_S \mid h \in \mathcal{H}\} \). By definition \(\mathcal{H}[S] = |L| \).

Furthermore, let \(T \subseteq 2^S \) be the family of subsets of \(S \) that are shattered by \(\mathcal{H} \). Using Lemma 22.4, we know that \(|T| \geq |L|\).
We also know that no set larger than d can be shattered, so T contains sets of size at most d. Therefore, the size of T is bounded by the number of such sets

$$|T| \leq \sum_{i=0}^{d} \binom{m}{i}.$$

In combination, $\mathcal{H}[S] = |L| \leq |T| \leq \sum_{i=0}^{d} \binom{m}{i}$.

To simplify the expression in Sauer’s Lemma, we can use the following bound on the binomial coefficients

$$\binom{m}{i} = \frac{m!}{(m-i)! \cdot i!} \leq \left(\frac{m}{d} \right)^i \frac{d^i}{i!} \leq \left(\frac{m}{d} \right)^d \frac{d^d}{i!}.$$

Together with the definition of the exponential function $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$, we get

$$\sum_{i=0}^{d} \binom{m}{i} \leq \sum_{i=0}^{d} \left(\frac{m}{d} \right)^d \frac{d^d}{i!} = \left(\frac{m}{d} \right)^d \sum_{i=0}^{d} \frac{d^d}{i!} \leq \left(\frac{m}{d} \right)^d e^d.$$

This gives us the following corollary.

Corollary 22.5. Let \mathcal{H} be a hypothesis class of VC dimension d. Then for all $m \geq d$

$$\mathcal{H}[m] \leq \left(\frac{em}{d} \right)^d.$$

Plugging this bound into Condition (1), we get that for a hypothesis class \mathcal{H} of VC dimension d for all choices of $\epsilon > 0$, $\delta > 0$ if we draw m times independently from distribution D such that

$$m \geq \max \left\{ \frac{8}{\epsilon}, \frac{2 \log \left(\frac{2}{\epsilon} \cdot \frac{d}{\delta} \cdot \frac{2m}{d} \right)}{\epsilon \log \left(\frac{2m}{d} \right)} \right\} = \max \left\{ \frac{8}{\epsilon}, \frac{2d}{\epsilon \log \left(\frac{2m}{d} \right)} + \frac{2}{\epsilon \log \left(\frac{2}{\delta} \right)} \right\},$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with err$_S(f) = 0$ have err$_D(h) < \epsilon$.

Corollary 22.6. Any hypothesis class of finite VC dimension is PAC-learnable.

3 Infinite VC Dimension

Not all hypothesis classes have a finite VC dimension. One example would be the set of all functions $X \to \{0, 1\}$. As we will show, these hypothesis classes are not PAC-learnable.

Theorem 22.7. Any hypothesis class of infinite VC dimension is not PAC-learnable.

To show this theorem, we have to show that the function $m_{\mathcal{H}}$ in the definition of PAC-learnability does not exist. We will show the following.

Proposition 22.8. Let \mathcal{H} be a hypothesis class of VC dimension at least d. Then for every learning algorithm there exists a distribution such on that on a training set of size $\frac{d}{2}$ we have err$_D(h_S) \geq \frac{1}{8}$ with probability at least $\frac{1}{4}$.

Proof. By definition \mathcal{H} shatters a set of size d. So, let $T \subseteq X$, $|T| = d$, be such a set. By definition, any labeling $\ell : T \rightarrow \{-1, 1\}$ can be extended to a hypothesis $f \in \mathcal{H}$ such that $\ell(x) = f(x)$ for all $x \in T$. There are $k = 2^d$ such labelings. Let f_1, \ldots, f_k, be the respective extended hypotheses. Each of them can be the ground truth. Let D_i denote the uniform distribution over pairs $(x, f_i(x))$ for $x \in T$.

Our learning algorithm will have to infer the correct i. The important observation is that any sample of size at most $\frac{d}{2}$ tells us the correct labels of only at most $\frac{d}{2}$ points in T. The others are still completely arbitrary.

Let h_S be the hypothesis computed by the learning algorithm on sample S. In principle, this may also be randomized. Our goal is to show that

$$\max_i \Pr \left[\text{err}_{D_i}(h_S) \geq \frac{1}{8} \right] \geq \frac{1}{7}.$$

We will apply Yao’s principle: Draw I uniformly from $\{1, \ldots, k\}$ and consider D_I. This is potentially confusing: We first draw index I randomly and then we use probability distribution D_I. Now, it suffices to show that

$$\Pr \left[\text{err}_{D_I}(h_S) \geq \frac{1}{8} \right] \geq \frac{1}{7}.$$

Fix any $x \in X$. We bound the probability that $h_S(x) \neq f_I(x)$. To this end, we think of the labels f_I being determined in a different way. First draw the sample S and determine the labels for the points in this set. Based on this, compute h_S. Only now determine the labels for the points not in this set. If x is not in the sample, then $h_S(x)$ is correct with probability $\frac{1}{2}$. It is not in the sample with probability at least $\frac{1}{2}$. Therefore

$$\Pr [h_S(x) \neq f_I(x)] \geq \frac{1}{4}.$$

This holds for all $x \in X$, therefore

$$\mathbb{E} [\text{err}_{D_I}(h_S)] \geq \frac{1}{4}.$$

Now, we can apply Markov’s inequality to get

$$\Pr \left[\text{err}_{D_I}(h_S) < \frac{1}{8} \right] = \Pr \left[1 - \text{err}_{D_I}(h_S) > \frac{7}{8} \right] \leq \frac{1}{8} \mathbb{E} [1 - \text{err}_{D_I}(h_S)] \leq \frac{3}{4} \cdot \frac{8}{7} = \frac{6}{7}.$$

This proves the claim.

References and Further Reading

These notes are based on notes and lectures by Anna Karlin https://courses.cs.washington.edu/courses/cse522/17sp/ and Avrim Blum http://www.cs.cmu.edu/~avrim/ML14/. Also see the references therein.