Max-Flow via Experts

Today, we will get to know another very surprising application of the experts framework. We will use it to solve the Maximum-Flow Problem. Our algorithm will be slow but it follows the same pattern that the fastest known algorithms for this problem use.

1 Max-Flow Problem

We are given a graph $G = (V, E)$ with edge capacities $(c_e)_{e \in E}$ and a dedicated source node $s \in V$ and sink node $t \in V$. Let $P$ be the set of all paths from $s$ to $t$. Our goal is to assign flow values $(x_P)_{P \in P}$ to the $s$-$t$-paths such that $x_P \geq 0$ for all $P$, no edge has more flow than its capacity, i.e., $\sum_{P : e \in P} x_P \leq c_e$ for all $e \in E$, and $\sum_{P \in P} x_P$ is maximized.

This problem can also be stated as a linear program as follows.

\[
\begin{align*}
\text{maximize} & \quad \sum_{P \in P} x_P \\
\text{subject to} & \quad \sum_{P : e \in P} x_P \leq c_e \quad \text{for all } e \in E \\
& \quad x_P \geq 0 \quad \text{for all } P \in P
\end{align*}
\]

2 Recap: No-Regret Learning

Let us quickly recap the framework of no-regret learning. We rephrase it slightly to better fit our needs for today. There are $m$ actions (experts) we can choose from in every step. There is a sequence of initially unknown gain vectors $g^{(1)}, \ldots, g^{(T)}$. Choosing action $i$ in step $t$ gives gain $g^{(t)}_i \in [0, 1]$. In step $t$, the algorithm first chooses a probability vector $y^{(t)}$, then it incurs gain $\sum_{i=1}^m y^{(t)}_i g^{(t)}_i$ and gets to know the entire vector $g^{(t)}$.

The regret of the algorithm is defined as

\[
\text{Regret}^{(T)} = G_{\max}^{(T)} - \sum_{t=1}^T \sum_{i=1}^m y^{(t)}_i g^{(t)}_i,
\]

where $G_{\max}^{(T)} = \max_{i} \sum_{t=1}^T g^{(t)}_i$.

The Multiplicative Weights algorithm guarantees

\[
\sum_{t=1}^T \sum_{i=1}^m y^{(t)}_i g^{(t)}_i \geq (1 - \eta) G_{\max}^{(T)} - \frac{\ln m}{\eta}.
\]

So, $\text{Regret}^{(T)} \leq \eta G_{\max}^{(T)} + \frac{\ln m}{\eta}$.

3 Algorithm Intuition

We design an algorithm based on the experts framework. It is, indeed, more or less the same algorithm that was proposed by Garg and Könemann, although they actually do not talk about regret. The algorithm actually works, just as it is, for multi-commodity flow.
The idea behind the algorithm is simple but maybe not intuitive. Like many other flow algorithms, we choose shortest paths from \( s \) to \( t \) and route as much flow along these edges as possible. The Edmonds-Karp algorithm chooses a path that minimizes the number of edges and then changes the network to a residual network. Our algorithm is different: It changes the lengths of the edges. At this point, the experts algorithm comes into play: We let it define the edge lengths. This is done by considering each edge as an expert and the probability that it puts on an expert as the respective edge length.

4 Flows and Edge Lengths

There is an important connection between edge lengths and flows, which we state in the following necessary condition for the existence of a flow.

**Lemma 27.1.** There is a flow of value \( F^* \) only if for all choices of edge lengths \((y_e)_{e \in E}\) with \( \sum_{e \in E} y_e = 1 \) there is a path \( P \) such that \( \sum_{e \in P} \frac{y_e}{c_e} \leq \frac{1}{F^*} \).

**Proof.** For any feasible LP solution \( x \) we have

\[
\sum_{P, e \in P} \frac{1}{c_e} x_P \leq 1 \quad \text{for all } e \in E .
\]

This also implies

\[
\sum_{e \in E} y_e \sum_{P, x \in P} \frac{1}{c_e} x_P \leq \sum_{e \in E} y_e = 1 .
\]

We can also reorder the left-hand side to

\[
\sum_{e \in E} y_e \sum_{P, x \in P} \frac{1}{c_e} x_P = \sum_{P \in P} \left( \sum_{e \in P} \frac{y_e}{c_e} \right) x_P .
\]

If \( \sum_{e \in P} \frac{y_e}{c_e} > \frac{1}{F^*} \) for all paths \( P \), then this immediately implies that also

\[
\sum_{P \in P} x_P < F^* \sum_{P \in P} \left( \sum_{e \in P} \frac{y_e}{c_e} \right) x_P \leq F^* .
\]

The point is that this lemma is not only necessary but also sufficient. More on this later.

5 Algorithm

We now formally define the algorithm. We use an arbitrary experts algorithm. To avoid any confusion with the paths, we call the probability vector \( y^{(t)} \) today.

- For \( t = 1, \ldots, T \)
  - Get probability distribution \( y^{(t)} \) from the experts algorithm.
  - Compute \( P^{(t)} \) as the shortest path with edge lengths \( \frac{y^{(t)}_e}{c_e} \)
  - Let \( c^{(t)} = \min_{e \in P^{(t)}} c_e \)
  - Let \( (x_p^{(t)})_{P \in P} \) be a vector such that \( x_{P^{(t)}} = c^{(t)} \) and \( x_P = 0 \) for \( P \neq P^{(t)} \).
– Return $g^{(t)}$ back to the experts algorithm, where
\[
g^{(t)}_e = \begin{cases} \frac{x^{(t)}}{c_e} & \text{if } e \in P^{(t)} \\ 0 & \text{otherwise} \end{cases}
\]

- Compute $\bar{x} = \sum_{t=1}^{T} x^{(t)}$, $G^{(T)}_{\max} = \max_{e \in E} \sum_{t=1}^{T} g^{(t)}_e$
- Return $x = \frac{1}{G^{(T)}_{\max}} \bar{x}$

Interestingly, using any no-regret algorithm, this algorithm always computes a $1 - \epsilon$-approximate flow if the number of iterations, $T$, is chosen large enough.

**Lemma 27.2.** The algorithm computes a feasible flow $x$.

**Proof.** Note that
\[
G^{(T)}_{\max} = \max_{e \in E} \sum_{t=1}^{T} g^{(t)}_e = \max_{e \in E} \sum_{P : e \in P} \bar{x}_P.
\]
So $G^{(T)}_{\max}$ is exactly the maximum factor by which $\bar{x}$ exceeds an edge capacity. Therefore, it is clear that the flow $x$ is feasible. □

**Lemma 27.3.** The flow $x$ has value at least $F^* \left(1 - \frac{1}{G^{(T)}_{\max}} \text{Regret}^{(T)}\right)$, where $F^*$ is the value of an optimal flow.

**Proof.** By the regret definition
\[
\sum_{t=1}^{T} \sum_{e \in E} y^{(t)}_e g^{(t)}_e = \max_{e \in E} \sum_{t=1}^{T} g^{(t)}_e - \text{Regret}^{(T)} = G^{(T)}_{\max} - \text{Regret}^{(T)}.
\]
Furthermore, for all $t$
\[
\sum_{e \in E} y^{(t)}_e g^{(t)}_e = \sum_{e \in P^{(t)}} y^{(t)}_e c^{(t)}_e = c^{(t)} \sum_{e \in P^{(t)}} \frac{y^{(t)}_e}{c_e}.
\]
Recall that $P^{(t)}$ was is a shortest path with respect to edge lengths $\left(\frac{y^{(t)}_e}{c_e}\right)_{e \in E}$. So, by Lemma 27.1,
\[
\sum_{e \in P^{(t)}} \frac{y^{(t)}_e}{c_e} \leq \frac{1}{F^*}.
\]
In combination, this gives us
\[
\frac{1}{F^*} \sum_{t=1}^{T} c^{(t)} \geq G^{(T)}_{\max} - \text{Regret}^{(T)}.
\]
Note that
\[
\sum_{t=1}^{T} c^{(t)} = \sum_{P \in P} \bar{x}_P
\]
and so
\[
\sum_{P \in P} x_P = \frac{1}{G^{(T)}_{\max}} \sum_{t=1}^{T} c^{(t)} \geq F^* \left(1 - \frac{\text{Regret}^{(T)}}{G^{(T)}_{\max}}\right).
\]
□
Note that this bound only is meaningful if $G^{(T)}_{\text{max}}$ is large. Fortunately, this is true in our case.

**Lemma 27.4.** The gain vectors $g^{(1)}, \ldots, g^{(T)}$ generated by the algorithm fulfill

$$G^{(T)}_{\text{max}} \geq \frac{T}{m}.$$ 

**Proof.** Observe that in each step $t$ there is an edge $e$ such that $g_e^{(t)} = 1$, therefore

$$G^{(T)}_{\text{max}} = \max_{e \in E} \sum_{t=1}^{T} g_e^{(t)} \geq \frac{1}{m} \sum_{e \in E} \sum_{t=1}^{T} g_e^{(t)} \geq \frac{T}{m}. \tag*{\square}$$

If we combine these lemmas, then as long as we use a no-regret algorithm, that is, $\text{Regret}^{(T)} = o(T)$, then the flow value approaches $F^*$ asymptotically for larger and larger $T$.

### 6 Guarantee with Multiplicative Weights

Let us now derive a quantitative bound if we use Multiplicative Weights. It actually pays off to be a little careful and to not just use the $O(\sqrt{T \log m})$ regret guarantee. Recall that the regret guarantee in case of $m$ experts is

$$\text{Regret}^{(T)} \leq \eta G^{(T)}_{\text{max}} + \ln m \eta,$$

so the above guarantee becomes

$$\sum_{P \in \mathcal{P}} x_P \geq F^* \left(1 - \eta - \frac{1}{G^{(T)}_{\text{max}}} \frac{\ln m}{\eta}\right) \geq F^* \left(1 - \eta - \frac{m \ln m}{T \eta}\right).$$

If we choose $\eta = \frac{\epsilon}{2}$ and $T = \frac{4}{\epsilon} m \ln m$, then $\sum_{P \in \mathcal{P}} x_P \geq F^*(1 - \epsilon)$.

**Theorem 27.5.** With Multiplicative Weights, the algorithm computes a $(1 - \epsilon)$-approximate flow using $\frac{1}{2\epsilon} m \ln m$ shortest-path computations. It overall running time is $O(\frac{1}{\epsilon} m^2 \ln m)$.

### 7 What is really happening?

One may wonder: Why does this work? As often, the answer is simple and complicated at the same time: It is because of strong LP duality. The dual of the flow LP (in the path formulation above is)

$$\begin{align*}
\text{minimize} & \quad \sum_{e \in E} c_e z_e \\
\text{subject to} & \quad \sum_{e \in P} z_e \geq 1 \quad \text{for all } P \in \mathcal{P} \\
& \quad z_e \geq 0 \quad \text{for all } e \in E
\end{align*}$$

The experts algorithm tries to find a solution to the primal and the dual LP. It iteratively adapts the primal and dual solution in a way similar to the algorithm for online set cover that we saw earlier.
References
