Problem Set 5

Please hand in your solutions for this problem set via email (roesner@cs.uni-bonn.de) or personally at Room 2.060 until Tuesday, 20th of November.

Problem 1
Let us look at the following algorithm inspired by the streaming algorithm for \(k\)-center.

1. Set \(C|P| = P\) and \(\ell = \min_{p\neq q\in P}d(p,q)\).
2. For \(k = |P| - 1\) to 1 do
3. Set \(C_k = C_{k+1}\)
4. While \(|C_k| > k\) do
5. Compute \(I \subseteq C_{k+1}\) by calling \texttt{maximal-independent-set}(\(G^2_\ell(C_{k+1})\))
6. Set \(C_k := I\) and \(\ell = 2 \cdot \ell\)

It computes for every \(k \in \{1, \ldots, |P|\}\) a set \(C_k\) of at most \(k\) centers. Additionally we recursively define a cluster \(C_{p,k}\) for each point \(p \in C_k\) as follows.

1. For each \(p \in P\) set \(C_{p,|P|} = \{p\}\).
2. For \(k = |P| - 1\) to 1 do
3. For each \(p \in C_k\) Set \(C_{p,k} = C_{p,k+1}\).
4. For each \(p \in C_{k+1} \setminus C_k\)
5. Let \(n_p = \arg\min_{q\in C_k} d(p,q)\).
6. Set \(C_{n_p,k} = C_{n_p,k} \cup C_{p,k+1}\).

- Show that this algorithm induces a hierarchical clustering.
- Show an upper bound for its approximation factor.

Problem 2
We look at clustering with outliers. As before we would like to adjust an algorithm for the \(k\)-center problem with outliers to the \(k\)-supplier problem with outliers.

- Show how bad the approximation factor can become when we again start with approximating the \(k\)-center version and then replace every center with its closest location. That is, assume that we ignore all knowledge about the possible center locations and solve the \(k\)-center problem with outliers, but then use this solution for the \(k\)-supplier problem with outliers by moving the chosen centers to the closest possible location.
• What changes when we instead use an approximation algorithm for the \(k \)-center problem with outliers and forbidden centers? This means that we are allowed to define a set \(F \subseteq P \) which we can not use as a center. In this case we are allowed to define up to \(|P| \) different sets of forbidden centers and can compute a solution for each of them.

Problem 3

We look at the problem of assigning children to a kindergarten in a big city. Let \(P \) be the set which contains the kindergarten teachers and all children signed up to go to a kindergarten. Let \(a : P \to \{T, C\} \) be a mapping that tells us whether \(p \in P \) is a teacher (\(a(p) = T \)) or a child (\(a(p) = C \)). In addition we know the set \(L \) of the places, where the different kindergartens are located. An assignment \(f : P \to L \) of children and teachers to kindergartens is called *fair* if all kindergartens have the same number of children per teacher assigned to them, i.e., for all \(\ell \in L \) we have

\[
\text{ratio}(\ell, C) := \frac{|\{x \in f^{-1}(\ell) \mid a(x) = C\}|}{|f^{-1}(\ell)|} = \frac{|\{x \in P \mid a(x) = C\}|}{|P|} =: \text{ratio}(P, C).
\]

(Notice that this implies that \(\text{ratio}(\ell, T) = \text{ratio}(P, T) \)). Assume that the number of children in \(P \) is equal to \(t \) times the number of teachers in \(P \) for an integer \(t \in \mathbb{N} \) (\(\text{ratio}(P, T) = 1/(t+1) \)). If we assume that each of the teachers is already employed by one of the kindergartens show how a fair assignment of the children to the kindergartens, which minimizes the maximum distance a parent has to go to bring their child to its kindergarten, can be computed.