Exercise 1:
Compute the table H for the pattern string 100011011011001.

Exercise 2:

a) Prove the correctness of the algorithm COMPUTATION OF H.

b) Give an exact analysis of the number of comparisons performed by the algorithm KMP.

c) For $1 \leq r \leq m$ we have computed the values $H(r) = \max_{l<r}\{l \mid b_1b_2\ldots b_{l-1} \text{ is suffix of } b_1b_2\ldots b_{r-1}\}$. It is obvious that in the case $b_{H(i)} = b_r$ there holds $b_{H(i)} \neq a_j$. Hence, instead of $H(r)$ it would be better to compute the value $\text{Next}(r)$ where $\text{Next}(r) = \max_{l<r}\{l \mid b_1b_2\ldots b_{l-1} \text{ is suffix of } b_1b_2\ldots b_{r-1} \text{ and } b_l \neq b_r\}$. Develop an efficient algorithm for the computation of the table Next. Prove the correctness of your algorithm and analyze its needed time. Modify the algorithm KMP such that the table Next instead of the table H is used.

Exercise 3:
Modify the algorithm KMP such that all occurrences of y in x are computed in $O(n+m)$ time. Extend the algorithm COMPUTATION OF H such that $H(m+1)$ is also computed.

Exercise 4:
Modify the algorithm KMP such that the longest prefix of y which is a substring of x is computed.