Exercise 1:
Prove Theorem 3.2 of the lecture.

Exercise 2:

a) Prove the following statement: If two different bases correspond to the same feasible basic solution \(x \) then \(x \) is degenerate.

b) Prove that there exists degenerate feasible basic solutions with unique corresponding basis.

Exercise 3:
Solve the following linear program using the simplex algorithm. \(<>\) means unconstrained.

\[
\begin{align*}
\text{max } z(x) &= x_1 - 3x_2 + x_3 \\
3x_1 + 2x_2 &= 6 \\
4x_1 + x_2 + 4x_3 &= 12 \\
x_1 &< 0 \\
x_2, x_3 &\leq 0
\end{align*}
\]

Exercise 4:
Solve the following linear program using the simplex algorithm.

\[
\begin{align*}
\text{min } z(x) &= 6x_1 - 9x_2 \\
x_1 - x_2 &= 6 \\
3x_1 + x_2 &\geq 1 \\
2x_1 - 3x_2 &\geq 3 \\
x_1 &\geq 0 \\
x_2 &\leq 0
\end{align*}
\]