1 **Affine Hull**

- For any set $X \subseteq \mathbb{R}^d$, let $\text{aff}_n(X)$ denote the intersection of all affine subspaces of \mathbb{R}^d containing X.

- For any set $X \subseteq \mathbb{R}^d$, let $\text{aff}_c(X)$ denote the set of all affine combinations of points of X.

Prove that $\text{aff}_n(X) = \text{aff}_c(X)$.

2 **Convex Hull**

i) Prove that the set of all convex combinations of $x_1, \ldots, x_n \in \mathbb{R}^d$ is a convex set.

ii) Prove by induction on n that the set of all convex combinations of $x_1, \ldots, x_n \in \mathbb{R}^d$ is contained in the convex hull of the set $\{x_1, \ldots, x_n\}$.

iii) Prove that for any closed set X the convex hull $\text{conv}(X)$ is equal to the intersection of all closed halfspaces that contain X.

3 **Translated copies**

Let $K \subseteq \mathbb{R}^d$ be a convex set and let $C_1, \ldots, C_n \subseteq \mathbb{R}^d$, $n \geq d+1$, be convex sets such that the intersection of every $d+1$ of them contains a translated copy of K. Prove that the intersection of all sets C_i also contains a translated copy of K that is $\exists t \in \mathbb{R}^d: \{t + x \mid x \in K\} \subseteq \bigcap_{i=1}^n C_i$.