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No-Regret Learning and Zero-Sum Games

Instructor: Thomas Kesselheim

We have seen a couple of applications of the experts framework. Today, we will get to know
another one. To some extend, we could actually have stated the earlier results as applications
of today’s result.

1 Zero-Sum Games

A zero-sum game is a special case of a two-player game. The game is represented by a matrix
A ∈ Rm×n. Player 1 (the row player) chooses a row index i; player 2 (the column player)
chooses a column index j. Given these choices, the row player has to pay Ai,j units of money
to the column player. (The amount can also be negative.)

Example 28.1. The famous game Rock-Paper-Scissors is represented by the matrix

A =

 0 1 −1
−1 0 1
1 −1 0

 .

We allow players to randomize their strategies. That is, the row player may choose a vector
x = (x1, . . . , xm),

∑m
i=1 xi = 1; the column player may choose a vector y = (y1, . . . , yn),∑n

j=1 yi = 1. We denote the respective sets of feasible vectors by ∆m and ∆n. (These sets of
so-called mixed strategies are called the m- or n-dimensional simplex.) Note that the expected
outcome can be represented as a vector-matrix-vector product x>Ay.

2 The Minimax Theorem

It seems to be a clear advantage to choose the probabilities only after the other player has done
so. But, the main result for zero-sum games, the minimax theorem, states that this is actually
not true if we allow probability distributions.

Theorem 28.2. For every matrix A ∈ Rm×n

max
y∈∆n

min
x∈∆m

x>Ay = min
x∈∆m

max
y∈∆n

x>Ay .

Observe that by the order of the maximum and the minimum on the left-hand side the
column player moves first and then the row player moves. On the right-hand side, first
the row player commits to her probability vector and only then the column player chooses
hers, possibly depending on the row player’s choice. So, the theorem states it that does
not matter if one of the two players moves first or both move simultaneously. The quantity
λ = maxy∈∆n minx∈∆m x>Ay is called the value of the game.

As we have already realized, it is always better to move second. Showing “≤” in Theo-
rem 28.2 is straightforward and the statement that really needs a proof is that also “≥” holds.
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3 An Experts Algorithm as Row Player

We will now prove the minimax theorem. Recall that an experts algorithm computes probability
vectors p(1), . . . ,p(T ). So, if we have m experts, this could be possible choices of probability
vectors for the row player. Our goal is to use the no-regret property to show the “≥” part of
equality.

We still have to define the cost of an expert i. To this end, we use that, in step t, the
algorithm deterministically determines the vector p(t) before seeing `(t). Therefore, `(t) can be
the game outcome provided that the column player moves after the row player. That is, let y(t)

maximize (p(t))>Ay(t) and set `(t) = Ay(t).
By this definition

m∑
i=1

p
(t)
i `

(t)
i = (p(t))>`(t) = (p(t))>Ay(t) .

We always let the column player move second. So, the outcome for her is at least as good
as if the row player chose the minimum, that is,

(p(t))>Ay(t) = max
y∈∆n

(p(t))>Ay ≥ min
x∈∆m

max
y∈∆n

x>Ay ,

where the equality follows from the definition of y(t) and the inequality because any possible
term is at least the minimum.

Now, we use the regret definition. It says that

Regret(T ) =
T∑
t=1

m∑
i=1

p
(t)
i `

(t)
i −min

i

T∑
t=1

`
(t)
i .

Let us understand the term mini
∑T

t=1 `
(t)
i . We use that the minimum is upper-bounded by any

weighted average. Therefore, we have for all x ∈ ∆m

min
i

T∑
t=1

`
(t)
i ≤

m∑
i=1

xi

T∑
t=1

`
(t)
i =

T∑
t=1

m∑
i=1

xi`
(t)
i .

Furthermore, by the definition of `
(t)
i , we have

m∑
i=1

xi`
(t)
i = x>Ay(t) .

Note that this holds for all x, so overall

min
i

T∑
t=1

`
(t)
i ≤ min

x∈∆m

T∑
t=1

x>Ay(t) .

Furthermore,

min
x∈∆m

T∑
t=1

x>Ay(t) = min
x∈∆m

x>A

(
T∑
t=1

y(t)

)
≤ T · max

y∈∆n

min
x∈∆m

x>Ay .

In combination

1

T
Regret(T ) ≥ min

x∈∆m

max
y∈∆n

x>Ay − max
y∈∆n

min
x∈∆m

x>Ay .
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If the row player uses a no-regret algorithm, we have Regret(T ) = o(T ), that is for every
ε > 0 there is a T that guarantees 1

T Regret(T ) ≤ ε, this then means

max
y∈∆n

min
x∈∆m

x>Ay ≥ min
x∈∆m

max
y∈∆n

x>Ay − ε .

As this guarantee holds for all ε > 0, it also has to hold for ε = 0.

4 Max Flow as a Zero-Sum Game

Zero-sum games also help us to see the Max-Flow Problem and our algorithm which uses an
experts algorithm in a new light. Note that if there is a flow of value F ∗, there is a way to
assign probabilities (x∗P )P∈P to the s-t paths such that any edge e fulfills

∑
P :e∈P x

∗
P ≤

ce
F ∗ .

Inspired by this observation, consider the zero-sum game in which the row player chooses
paths and the column player chooses edges. If the row player chooses path P and the column
player chooses edge e, the transfer should be AP,e = F ∗

ce
if e ∈ P and 0 otherwise. This way, we

have

((x∗)>A)e =
∑
P∈P

x∗PAP,e =
∑

P :e∈P
x∗P

F ∗

ce
≤ 1 for all e ∈ E

and therefore also
(x∗)>Ay ≤ 1 for all y ∈ ∆m .

By these considerations, it follows that

max
y∈∆n

min
x∈∆m

x>Ay = 1

if and only if there is a flow of value F ∗.
Our flow algorithm tries to find exactly this pair x,y. It does so by using exactly the row

player’s strategy of an experts algorithm mentioned above.


