
Algorithms and Uncertainty, Winter 2018/19 Lecture 9 (5 pages)

Stochastic Vertex Cover

Instructor: Thomas Kesselheim

In the analysis of online algorithms, we assumed that we have to make commitments right away.
In practice often restrictions are not as strict. Just suppose you have to fly to New York City
two months from now. You could either buy the ticket now for a cheap price or later on. Now
the ticket is cheap but there is a chance that you actually cannot go on the trip. So, it might
also make sense to wait and buy the ticket for a higher price when it is certain that you have
to go.

This is a typical example of a multi-stage optimization problem. These are problems in
which the optimization instance gets more and more concrete over time and decisions can be
made on the way. There are both models with stochastic as well as adversarial inputs. Today,
we will consider simple examples of such stochastic problems.

1 Stochastic Vertex Cover

Recall the standard offline weighted Vertex Cover problem: We are given a graph G = (V,E)
and vertex weights (cv)v∈V . We have to choose a subset F ⊆ V of the vertices such that for
each edge at least one endpoint is contained in F . That is, for all {u, v} ∈ E, we have u ∈ F or
v ∈ F . The objective is to minimize the sum of weights of selected vertices

∑
v∈F cv.

In the stochastic version, the edge set E is uncertain. It is drawn from a known probability
distribution. The probability that the edge set is E is given as pE . Our algorithm knows the
entire vector (pE)E from the start. We assume that pE = 0 for all except polynomially many
sets E.

We can pick vertices at two points in time: Before the edge set E is revealed and afterwards.
In the first stage, vertices are cheaper: For vertex v, we have to pay cI

v. In the second stage, for
vertex v, we have to pay cII

v ≥ cI
v.

Important special cases are as follows. We might have cI
v = cII

v for all v. In this case,
choosing sets in the first stage does not make any sense and we might as well wait until the
second stage. If cII

v =∞, then we want to cover all edges that can possibly show up already in
the first stage.

We know the distribution (pE)E and well as both cost vectors (cI
v)v∈V and (cII

v)v∈V in
advance. The goal is to minimize the expected cost

∑
v selected in first stage

cI
v + E

 ∑
v selected in second stage

cII
v

 .

Example 9.1. An example instance could look as follows. There is a fixed set of vertices, there
are three scenarios, corresponding to different edges. The problem is already interesting if in
the first stage every vertex costs cIv = 1 and in the second stage every vertex costs cIIv = λ.

Algorithms and Uncertainty, Winter 2018/19 Lecture 9 (page 2 of 5)

pE = 0.2 pE = 0.5 pE = 0.3

2 Our Goal

Observe that the stochastic vertex-cover problem can be modeled as a Markov decision process
with time horizon T = 2. So, we could in principle use the algorithm based on dynamic
programming to compute an optimal policy. However, the number of states will be huge.
Computing it is at least as hard as solving the Vertex Cover problem optimally because one
special case is that pE = 1 for one set E. Vertex Cover is an NP-hard problem, so we cannot
hope to find an exact algorithm that runs in polynomial time. Therefore, we will be interested
in approximating the optimal policy in polynomial time.

Given any instance I of the problem, that is the probability distribution over edge sets
and the different cost vectors, let CI(π) denote the expected cost of policy π. There is an
optimal policy π∗I such that CI(π

∗
I). Our goal is to design a polynomial time algorithm with

the following property. It is given an instance I and it is supposed to compute a policy π such
that CI(π) ≤ α · CI(π∗I), where α > 1 is as small as possible.

Note that said π∗I is not the offline optimum. Indeed, there is not a lot we can do if we
are compared to the offline optimum. Suppose we have only a single edge e, which has to be
covered with probability ε. Covering it in the first phase costs ε; in the second phase costs 1.
Any policy has expected cost ε but the offline optimum has expected cost ε2.

3 LP Relaxation

Our approach to approximating the optimal policy will be to first formulate a linear program
that any policy has to fulfill but not every solution corresponds to a feasible policy. For the
stochastic vertex-cover problem, we can write the following LP.

min
∑
v∈V

cI
vxv +

∑
E

pE
∑
v∈V

cII
v yE,v

subject to xu + yE,u + xv + yE,v ≥ 1 for all E, {u, v} ∈ E
xu, yE,u ≥ 0 for all E, u ∈ V

Observe that we get a feasible solution by we setting xv = 1 if the optimal policy chooses vertex
v in the first stage and yE,v = 1 if the optimal policy chooses vertex v in the second stage
when the edge set is E. The objective function value is exactly the expected cost of the optimal
policy.

4 A Simple Algorithm

Our approximation algorithm computes an optimal solution (x∗, y∗) to this LP. This can be
done in polynomial time if pE > 0 for only polynomially many sets E. This solution does not

Algorithms and Uncertainty, Winter 2018/19 Lecture 9 (page 3 of 5)

necessarily correspond to a feasible policy because values can be fractional. We derive a feasible
policy as follows.

• In the first stage, pick all vertices for which x∗v ≥ 1
4 .

• In the second stage, when knowing E, pick all vertices for which y∗E,v ≥
1
4 .

Theorem 9.2. The algorithm computes a feasible policy whose expected cost is at most 4-times
the cost of the optimal policy.

Proposition 9.3. The algorithm always computes a feasible policy.

Proof. Consider any scenario E and e = {u, v} ∈ E. As (x∗, y∗) is a feasible LP solution, we
have

x∗u + y∗E,u + x∗v + y∗E,v ≥ 1 .

This means that one of x∗u, y∗E,u, x∗v, and y∗E,v is at least 1
4 . This means that edge e is covered

in scenario E.

Proposition 9.4. The expected cost of the computed policy is at most 4-times the expected cost
of the optimal policy.

Proof. Let F0 be the set of vertices picked by the computed policy in the first stage, FE be the
set of vertices picked in the second stage if the edge set is E.

We now have ∑
v∈F0

cI
v ≤ 4

∑
v∈V

cI
vx
∗
v and

∑
v∈FE

cII
v ≤ 4

∑
v∈V

cII
v y
∗
E,v .

Therefore

∑
v∈F0

cI
v + E

∑
v∈FE

cII
v

 =
∑
v∈F0

cI
v +

∑
E

pE
∑
v∈FE

cII
v ≤ 4

(∑
v∈V

cI
vx
∗
v +

∑
E

pE
∑
v∈V

cII
v y
∗
E,v

)
.

As observed above, the cost of the optimal LP-solution is upper bounded by the expected cost
of the optimal policy.

5 Challenge: Large Number of Scenarios

One major challenge of the LP-based approach is that the the LP enumerates all scenarios
explicitly. This way, the number of variables and number of constraints in the LP grows linearly
in the number of scenarios. Having many scenarios is not as hypothetical as it might sound.

For example, if each edge is present with probability 1
2 independently, we would have 2

n(n−1)
2

different scenarios and the LP gets huge. This happens despite the fact that the probability
distribution over scenarios can be described very easily.

The first question that one should ask is: How should such a probability distribution be
represented? The most general approach is to say that the algorithm does not have access to
the scenarios explicitly. Instead, it has sample access to the distribution: It may draw from it
as often as necessary and will always see only the drawn set E.

A standard algorithmic approach is called sample-average approximation. Draw N times
from the distribution and set p̂E to the fraction of times that scenario E was drawn. Now, run
the algorithm pretending that the distribution is actually given by (p̂E)E .

Algorithms and Uncertainty, Winter 2018/19 Lecture 9 (page 4 of 5)

The key question is: How large do we have to choose N so that the sample is a good
representative of the distribution? There are many results giving answers to this question,
often in a much more general form. Here, we will give an example calculation, which has some
weaknesses. See the paper by Charikar, Chekuri, and Pál for a stronger bound.

To formalize the question, let X = {(xv)v∈V | 0 ≤ xv ≤ 1 for all v} be the set of all possible
first-stage decision vectors x. For an assignment of the variables x in the LP, we define f(x) to
be the optimal LP value with respect probability distribution (pE)E , keeping x fixed. We let
f̂(x) be the same quantity but with respect to the probability distribution (p̂E)E .

Our algorithm uses a point x that minimizes f̂ , although it should actually minimize f .

Theorem 9.5. Let M = maxv∈V c
I
v + cIIv . For all ε, δ > 0, if N ≥ 9n2M2

2ε2
ln
(

2
δ

(
3nM
ε + 1

)n)
,

then
Pr
[
There is x ∈ X with |f̂(x)− f(x)| ≥ ε

]
≤ δ .

This means that minimizing f̂ instead of f gives an additive error of less then 2ε with
probability at least 1− δ. The biggest weakness is that the bound depends on M . So, it is only
pseudo-polynomial.

Proof. We will proceed in three steps.

Step 1: The first step is to consider only a fixed x ∈ X. Let g(x,E) be the cheapest way
to cover all of E given that the (fractional) first-stage decision is fixed to x. Let E1, . . . , EN be
the scenarios drawn for the sample-average approximation. By this definition, we have

f̂(x) =
1

N

N∑
i=1

g(x,Ei) .

Furthermore, f(x) = E [g(x,E)], where the expectation is over E. So, we can interpret f̂(x)
as an average of N independent real-valued random variables. Their expectations are exactly
f(x). This is a clear case for Hoeffding’s inequality.

Lemma 9.6 (Hoeffding’s inequality). Let Z1, . . . , ZN be independent random variables such
that ai ≤ Zi ≤ bi with probability 1. Let Z̄ = 1

N

∑N
i=1 Zi be their average. Then for all t ≥ 0

Pr
[∣∣Z̄ −E

[
Z̄
]∣∣ ≥ t] ≤ 2 exp

(
− 2N2t2∑N

i=1(bi − ai)2

)
.

Setting ai = 0, bi = nM for all i, we get for all x ∈ X and all t > 0

Pr
[
|f̂(x)− f(x)| ≥ t

]
≤ 2 exp

(
− 2Nt2

n2M2

)
.

Step 2: This probability bound holds for every fixed x ∈ X but we want the sums to be close
for all x simultaneously. To get such a bound, we first approximate X by a mesh X ′. The mesh
X ′ contains only the points x ∈ X for which xv is a multiple of γ for every v ∈ V . Here, γ is

chosen appropriately small. By this definition, X ′ is finite. More precisely, |X ′| =
(

1
γ + 1

)n
.

Recall the union bound.

Lemma 9.7 (Union Bound). For any sequence of not necessarily disjoint events E1, E2 . . ., we
have

Pr [E1 ∪ E2 ∪ . . .] ≤ Pr [E1] + Pr [E2] +

Algorithms and Uncertainty, Winter 2018/19 Lecture 9 (page 5 of 5)

x′

x

Figure 1: To bound the difference of f̂(x) and f(x), we use x′. We know that x′ is close, f̂(x′)
and f(x′) differ by at most t, and that f and f̂ do not change drastically.

We can interpret ∃x′ ∈ X ′ : |f̂(x′)− f(x′)| ≥ t as such a sequence of events and get that for
all γ > 0, t > 0

Pr
[
∃x′ ∈ X ′ : |f̂(x′)− f(x′)| ≥ t

]
≤
∑
x′∈X′

Pr
[
|f̂(x′)− f(x′)| ≥ t

]
≤ |X ′|2 exp

(
− 2Nt2

n2M2

)
.

Step 3: Now, we can move to all points. Given any x ∈ X, let x′ ∈ X ′ be the closest point
in X ′. By definition of M , we have |f(x)− f(x′)| ≤ nγM and also |f̂(x)− f̂(x′)| ≤ nγM . By
triangle inequality, if |f̂(x′)− f(x′)| < t for all x′ ∈ X ′, then we also have (see also Figure 1)

|f̂(x)− f(x)| = |f̂(x)− f̂(x′) + f̂(x′)− f(x′) + f(x′)− f(x)|
≤ |f̂(x)− f̂(x′)|+ |f̂(x′)− f(x′)|+ |f(x′)− f(x)|
≤ 2nγM + t .

Overall, this gives us that for all t > 0 and γ > 0

Pr
[
∃x ∈ X : |f̂(x)− f(x)| ≥ 2nγM + t

]
≤
(

1

γ
+ 1

)n
2 exp

(
− 2Nt2

n2M2

)
Now, setting t = ε

3 and γ = ε
3nM , the bound follows.

References

• On the costs and benefits of procrastination: Approximation algorithms for stochastic
combinatorial optimization problems, N. Immorlica, D. Karger, M. Minkoff. V. Mirrokni,
SODA 2004 (Vertex Cover)

• Sampling Bounds for Stochastic Optimization, M. Charikar, C. Chekuri, M. Pál, AP-
PROX/RANDOM 2005 (Sample-Average Approximation)

