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Chapter 1
Introduction

[This chapter is under construction!]

Clustering is a fundamental unsupervised learning tool. It can be used to search data
for hidden structure, to summarize data and to classify new unseen data according to
prior findings. Since applications are manifold, clustering also offers a rich variety of
algorithmic problems. In this lecture, we will study clustering problems through the
lens of algorithm theory. Thus, we are equipped with a mathematical formulation that
allows us to judge the quality of a clustering, and our goal is to find a clustering that
has the best possible quality.

The clustering problems studied in this lecture share some properties: Most of them
are partitional clustering problems, i.e., we get some input data and want to partition
it into disjoint subsets of associated elements. Furthermore, most problems that we
study are center-based, which means that we do not only want the partitioning, but
we want a set of centers and an assignment of points to centers which then implicitly
defines the partitioning. All clustering problems are geometric clustering problems,
which means that we have geometric information about the input data (which we then
call input points), i.e., we know the distances between any two points.

For our study of geometric clustering problems, we need to recall the definition of
metric spaces. The most known metric space is the Euclidean space Rd, where two
points x, y ∈ Rd with x = (x1, . . . , xd)T and y = (y1, . . . , yd)T have distance ||x− y|| =√∑d

i=1(xi − yi)2. It is a special case of the following more general definition.

Definition 1. Let X be any non-empty set and d : X ×X → R be a function on X.
Then d is a metric on X if it holds for all x, y, z ∈ X that

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, y) ≤ d(x, z) + d(z, y).

We call a pair (X, d) consisting of a finite set X and a metric d a metric space.

4



1. Introduction 5

We refer to Condition 3 in Definition 1 as the triangle inequality. Usually we call
elements of X points. Furthermore, we extend any metric d to point sets by setting

d(x,A) = inf
y∈A

d(x, y)

for any A ⊆ X and
d(A,B) = inf

x∈A,y∈B
d(x, y).

for any A,B ⊆ X.

The Euclidean space Rd with the Euclidean distance is one example for a metric space.
We will encounter it later in the lecture when we study the k-means problem. This
modeling is common in machine learning and statistics, where k-means comes up as
an important problem. However, clustering is also a classical topic in graph theory.
Here, it is more common to study the case of finite metric spaces. The input then
consists of a finite point set P and a distance function d : P ×P → R which is metric,
i.e. (P, d) form a metric space. In this scenario, d simply consists of |P |2 numbers
that give the distance for every pair of points in P . The can thus be viewed as an
undirected complete weighted graph: the vertices are the points in P , and the weight
of edge {x, y} is d(x, y) = d(y, x) for all x, y ∈ P .

In this context, the the metric space (P, d) can also be implicitly given by a graph
metric: For any (not necessarily complete) graph G = (V,E) weighted by a function
w : V × V → R≥0, we define the shortest path distance ds(x, y) between x, y ∈ V to
be the length of the shortest path between x and y in G. One can show that ds is a
metric on V , and thus G and w implicitly define the metric space (V, ds).

All problems studied in this lecture are minimization problems. As it turns out,
for most of them, it is not known how to compute optimal solutions in polynomial
time, and it may well be impossible to do so, since the problems are NP-hard. For
this reason, we will resort to approximation algorithms that find a reasonably good
solution instead of an optimal one.

Recall that an α-approximation algorithm for a minimization problem is an algorithm
that outputs solutions with a value that is at most α times the value of an optimal
solution. Let I be the set of all possible input instances to an optimization problem,
let ALG be an algorithm that computes a feasible solution SALG(I) for any I ∈ I. For
any I ∈ I, let S∗(I) be an optimal solution for I. For a minimization problem, suppose
that c(S) is the cost of a solution S. Then ALG is an α-approximation algorithm if

sup
I∈I

c(SALG(I))
c(S∗(I)) ≤ α.

Whenever we talk about α-approximation algorithms, we implicitly mean algorithms
that have a polynomial worst-case running time. All problems considered in this
lecture can be solved optimally given exponential running time.

Our studies will also include randomized approximation algorithms. For randomized
algorithms, c(SALG(I)) or v(SALG(I)), respectively, is a random variable. We might
either want to achieve that it is close to the optimum value with high probability, or
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that its expected value is close to the optimum value. We choose the second alternative.
Thus, we say that a randomized algorithm ALG is an α-approximation algorithm in
expectation for a minimization problem if

sup
I∈I

E
[
c(SALG(I))

]
c(S∗(I)) ≤ α.

As for deterministic algorithms, we also require randomized approximation algorithms
to have a polynomial worst-case running time.

1.1 Mathematical facts and notations

This section collects mathematical facts that we need throughout the lecture.

Fact 2. For all r ∈ R with r 6= 1 and all n ≥ 0,
n∑
i=0

ri = 1− rn+1

1− r .

If |r| < 1, then
∞∑
i=0

ri = 1
1− r .

For a number i ∈ N≥1, we sometimes use the abbreviation [i] = {1, . . . , i} to denote
the set of all numbers from 1 to i.

Euclidean geometry

Fact 3. The Euclidean space Rd consists of all vectors (x1, . . . , xd)T with xi ∈ R for
all xi ∈ R. The length of a vector x ∈ Rd is defined as

||x|| :=

√√√√ d∑
i=1

x2
i ,

and this defines a norm. The distance between two points x, y ∈ Rd is the length of
their difference vector, i.e.,

||x− y|| =

√√√√ d∑
i=1

(xi − yi)2.

This distance is a metric on Rd.

A matrix A ∈ Rn×d consists of n · d values from R that are organized into n rows and
d columns. The Frobenius norm is an important norm for matrices.
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Definition 4 (Frobenius norm). Let A ∈ Rn×d be a matrix and let aij be the jth entry
in row i of A. The Frobenius norm of A is denoted by ||A||F and defined by

||A||F =

√√√√√ n∑
i=1

d∑
j=1

a2
ij .

For two matrices A ∈ Rn×d and B ∈ Rd×m,

A =


a11 a12 · · · a1d
a21 a22 a2d
... ... . . . ...
an1 a2n · · · and

 and B =


b11 b12 · · · b1m
b21 b22 b2m
... ... . . . ...
bd1 bd2 · · · bdm

 ,

the matrix product AB is defined to be the matrix C ∈ Rn×m with

AB = C =


c11 c12 · · · c1m
c21 c22 c2m
... ... . . . ...
cn1 cn2 · · · cnm

 where cij =
m∑
k=1

aikbkj.

For two vectors x, y ∈ Rd, the scalar product (or dot product) and the tensor product
can be viewed as special cases of the matrix product for matrices of sizes d × 1 and
1×1. Specifically, the scalar product of x ∈ Rd and y ∈ Rd is 〈x, y〉 := xty = ∑d

i=1 xiyi,
and the tensor product of x ∈ Rd and y ∈ Rd is

xyT =


u1v1 · · · u1vd

. . .
. . . . . .

udv1 · · · udvd

 .

Notice that the result of the scalar product is a value in R, and the result of the tensor
product is a (d× d)-matrix.

For a point x ∈ Rd, the scalar product of x with itself gives the squared length of x,
i.e., 〈x, x〉 = ||x||2. If the scalar product of two points x, y ∈ Rd is zero, then we say
that they are orthogonal. We call a set of points orthonormal if all points are unit
vectors (i.e., they have length 1), and they are pairwise orthogonal. Orthogonal (and
in particular orthonormal) vectors satisfy the Pythagorean theorem.

Fact 5. Let x1, . . . , xk ∈ Rd be k ≤ d pairwise orthogonal vectors from Rd. Then it
holds that ∣∣∣∣∣

∣∣∣∣∣
k∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
2

=
k∑
i=1
||xi||2.

A matrix is called orthogonal when the column vectors of the matrix are of unit length
and pairwise orthogonal (they form a set of orthonormal vectors).



Chapter 2
The happy world of k-center

We start with the study of the k-center problem. It is a classical problem from graph
theory, and it is one of the rare problems where we precisely know the best possible
approximation ratio under the assumption that P 6= NP . This approximation ratio
can be achieved by two elegant approximation algorithms.

2.1 The metric k-center problem

The input to the k-center problem is a finite metric space (P, d) and a number k ∈
N≥1. The k-center problem is a center-based clustering problem, meaning that we are
searching for a set of centers C that give a good clustering when every point is assigned
to the center closest to it. Center-based clustering problems differ in the evaluation of
the quality of a center set. The k-center problem is a so-called min-max problem: We
are minimizing the maximum distance of any point to its closest center.

Definition 6. Let (P, d) be a metric space and k ∈ N≥1 be a number. The k-center

r

Figure 2.1: An example for a k-center instance and solution with k = 3.
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2.2. A simple and elegant approximation 9

problem is to compute a set C ⊆ P with |C| = k that minimizes

r(C) := max
x∈P

min
c∈C

d(x, c).

We call the value maxx∈P minc∈C d(x, c) either k-center objective value or maximum
radius of the solution C. Figure 2.1 shows a point set, three chosen centers and the
radii of the resulting three clusters. The maximum radius of the depicted solution is
labeled by r.

2.2 A simple and elegant approximation

Gonzalez’ algorithm [Gon85] gives a greedy 2-approximation for the k-center problem.
The algorithm starts by picking an arbitrary point c1 ∈ P as the first center. Then it
does k− 1 iterations of the following: Choose the point ci which is farthest away from
the previously chosen centers {c1, . . . , ci−1} to be the center. This is repeated until k
centers are chosen.

farthest-first-traversal(a finite metric space (P, d), k ∈ N≥1)

1. Choose a center c1 arbitrarily from P and set C1 = {c1}
2. For i = 2 to k do
3. Choose ci as (one of) the points maximizing d(x,Ci−1),

i.e., ci = arg max{d(x,Ci−1) | x ∈ P}
4. Set Ci = Ci−1 ∪ {ci}
5. Return C = {c1, . . . , ck}

Figure 2.2 shows an example run of Algorithm farthest-first-traversal with k =
3. The first center is chosen arbitrarily. Center 2 and 3 are then chosen as points with
maximum distance to the previously chosen centers. This means that the algorithm
has the tendency to choose points that are at the border of a cluster. The resulting
solution is worse than the solution depicted in Figure 2.1, but its maximum radius r′
only slightly larger than r from the previous solution. The following theorem shows
that in general, the maximum radius is at most twice the maximum radius of an
optimal solution.

Theorem 7. Algorithm farthest-first-traversal((P, d), k) computes a 2-approximation
for the k-center problem.

Proof. Let C be the solution computed by farthest-first-traversal((P, d), k).
This solution has radius r(C) = maxx∈P d(x,C). Then there is a point y ∈ P that
actually has distance r(C) to its closest center in C, i.e., d(y, C) = minc∈Ck d(y, c) =
r(C). Now we observe that the distance between y and its closest center can only
get shorter during the execution of the algorithm, i.e., d(y, Ci) ≥ d(y, Ck) for all
i ∈ {1, . . . , k}. Thus, d(y, Ci) ≥ r(C) is true for all i ∈ {1, . . . , k}. Since Gonzalez’
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Figure 2.2: An example run of farthest first traversal with k = 3.
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algorithm always chooses the point that has maximum distance to the previously
chosen centers, d(y, Ci) ≥ r(C) implies d(ci+1, C

i) ≥ r(C) for all i ∈ {1, . . . , k − 1}.
This means that the centers and y form a set of k + 1 points with pairwise distance
r(C). Any solution has to have a cluster with two of these points, and this cluster
then has at least radius r(C)/2. Since the optimal solution has a maximum radius of
at least r(C)/2, and the computed solution has a radius of r(C), we conclude that the
computed solution is a 2-approximation.

Lemma 8. Algorithm farthest-first-traversal(P, d) can be implemented to run
in time O(|P | · k).

Proof. Line 1 takes constant time. The loop in lines 2-4 is executed k − 1 times. For
line 3, the algorithm needs to find the point whose closest center is farthest away. To
keep track of this, we use an array cmin which stores the closest center (so far) for each
point, i.e. we preserve the equality cmin(x) = arg min{c ∈ Ci−1d(x, c)} for all x ∈ P .
The array is initialized in time O(|P |) before starting the loop. In the loop, when
we choose a new center ci, we compare d(x, ci) with d(x, cmin(x)) and update cmin(x)
accordingly. This takes constant time for every point, i.e., updating cmin takes time
O(|P |). We can find the point with the maximum cmin value simultaneously or find it
in another O(|P |) operations after the updating is finished. Thus, lines 2-4 take time
O(|P |k̇).

Was part of lecture 1, but is not used until later

The following definitions will later be part of the respective chapters.

Definition 9. Let (P, d) be a metric space and f : P → N≥1 be a function of opening
costs. The facility location problem is to compute a set C ⊆ P that minimizes∑

x∈P
min
c∈C

d(x, c) +
∑
c∈C

f(c).

– end of lecture 1 –

2.3 A matching lower bound

The k-center problem is NP-hard. This has been observed simultaneously by Hochbaum [Hoc84]
and Hsu and Nemhauser [HN79], who also both discovered the inapproximability re-
sult that we will see below. Both their proofs rely on a reduction from the dominating
set problem.

Definition 10. Let G = (V,E) be an undirected unweighted graph. A set D ⊂ V is
a dominating set for G if every vertex in V has a neighbor in D, i.e., for all u ∈ V ,
either u ∈ D or there exists a v ∈ D such that {u, v} ∈ E.

The dominating set problem is to decide for a given graph G and a number k ∈ N≥1

whether a dominating set D for G exists that has cardinality at most k, i.e., |D| ≤ k.
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The dominating set problem is NP-hard; it is one of the problems shown to be NP-
hard in the book by Garey and Johnson [GJ79]. It is closely related to the k-center
problem.

Lemma 11. The k-center problem is NP-hard. Furthermore, it is NP-hard to compute
an α-approximation for the k-center problem for any α < 2.

Proof. Let G = (V,E), k be an input to the dominating set problem. We define an
input for the k-center problem by setting P = V and setting the distance d(x, y)
between x ∈ P and y ∈ P to 1 if {x, y} ∈ E, and to 2 otherwise. This is a metric
because no function d : P×P → {1, 2} can violate the triangle inequality. Assume that
we are given an algorithm that decides the decision variant of the k-center problem,
i.e., for a given weighted graph, a number of centers and a value t, it decides whether
a solution to the k-center problem of radius at most t exists. We apply this algorithm
to the input P , d, k and t = 1. We output YES if the algorithm finds a clustering of
radius at most 1 and NO otherwise.

Now we argue that this reduction is correct. First, assume that a dominating set D of
size at most k exists in D. Then every vertex in V is either in D or it has a neighbor
in D. Consider D as a center set in G′. Then every point in P either has distance 0
to its closest center (if it is in D itself), or it has distance 1 (if it has a neighbor in D).
Thus, the maximum radius of the solution is 1. Second, assume that the algorithm
found a center set C with maximum radius 1 in G′. Then C is a dominating set in
G: Every vertex has distance ≤ 1 to at least one vertex in C, so it is either in C or a
neighbor of a point in C.

This shows that the k-center problem is NP-hard. But that is not all: We observe
that the reduction nearly immediatly also gives an inapproximability result. That
is because the only possible distances between two distinct points in G′ are 1 or 2.
Thus, any approximation algorithm with an approximation ratio α < 2 has no other
option than providing an optimal solution. More precisely we can formulate the above
reduction in the following way: Assume that we are given an algorithm that computes
an α-approximation for the k-center problem for α < 2. Apply this algorithm to P ,
d, k. If the maximum radius of the solution is 1, then output YES, otherwise, output
NO. By the same arguments as above, this reduction is correct and shows that it is
NP-hard to compute an α-approximation for the k-center problem for α < 2.

2.4 Incremental and hierarchical clustering

In this section, we consider incremental and hierarchical clustering. The basic idea
behind these notions is that instead of one clustering for one fixed number of centers,
we want multiple clusterings, indeed, even one clustering for each possible value of k.
The two notions are related, but differ in the details of the desired clusterings.

Incremental clusterings are motivated by the scenario where we want to place centers,
but we do not know how many we will build, or we cannot build them all at the same
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time. An incremental clustering thus gives an ordering of the input points, and the
first k points in this order form the center set for the k-center clustering with k centers.

In the following, we will compare incremental and hierarchical clusterings with optimal
clusterings for a fixed number of centers. For this purpose we refer to an optimal
solution for the k-center problem (with k centers) by Copt

k .

Definition 12. Let (P, d) be a metric space. An incremental clustering is an ordering
x1, . . . , x|P | of all points in P .

For any k ∈ [|P |], the solution to the k-center problem on P induced by such an
incremental clustering is the center set {x1, . . . , xk}.

We say that an incremental clustering is α-competitive if for all k ∈ [|P |],

r({x1, . . . , xk}) ≤ α · r(Copt
k ),

where Copt
k is an arbitrary optimum solution with k centers.

Our notion of competitiveness in Definition 12 compares the individual clusterings
with optimal clusterings with the same number of clusters. Notice that we do not
actually know the values r(Copt

k ), and can in general not compute them (assuming
P 6= NP ), so we can not compute the competitiveness of a given incremental solution.

In general, a 1-competitive incremental clustering does not even exist since the optimal
clusterings may contradict each other in their choice of centers.

However, we observe that Gonzalez’ algorithm can be used to compute an incremental
clustering if we simply continue using it until all points have become a center. This
means that the approximation algorithm which is optimal under the condition P 6= NP
can directly be used to compute incremental clusterings of the same quality.

full-farthest-first-traversal(a finite metric space (P, d))
1. Choose a center c1 arbitrarily from P , set C1 = {c1}
2. For i = 2 to |P | do
3. Set Ri := max

x∈P
d(x,Ci−1)

4. Choose a ci as a point with d(ci, Ci−1) = Ri, set Ci = Ci−1 ∪ {ci}
5. Return c1, . . . , c|P | and R2, . . . , R|P |

The only real change compared to farthest-first-traversal is that the algorithm
full-farthest-first-traversal does not have k as a parameter, runs the main
loop until |P | centers are chosen and returns the numbering instead of one fixed center
set. The other changes are for our convenience: We name the distance of center ci to
the previously chosen centers Ri. This will prove helpful later.

Corollary 13. The algorithm farthest-first-traversal((P, d)) computes a 2-
competitive incremental k-center clustering. In particular, Rk ≤ 2 · r(Copt

k−1) holds for
all k ∈ {2, . . . , |P |} and optimal solutions Copt

k .
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Proof. This follows directly from Theorem 7.

Later in this lecture, we see that it is a lucky coincidence that a best-possible approxi-
mation algorithm for the k-center problem already computes an incremental solution.
For other objectives, this is not the case, and obtaining incremental clusterings is much
more involved.

Hierarchical clusterings are related to incremental clusterings, yet they are motivated
differently. Here, the clusterings have to be related. More precisely, we want that for
all k, the clustering with k clusters can be obtained from the clustering with k + 1
clusters by merging two of the clusters. We call this hierarchical compatibility. Until
now, we have had a fairly center-based view on clusterings. That makes sense in all
scenarios where we want to summarize the data by the centers, and thus, the centers
are really what we are interested in. However, in some scenarios it is the partitioning
itself that we are curious about. We want to know how the data points themselves
cluster into groups, and the center is just a means to judge the (dis)similarity of the
points in the same cluster. This is the case for hierarchical clustering. We want to see
the data clustered into groups at different levels of granularity.

Definition 14. Let (P, d) be a metric space. A hierarchical k-center clustering consists
of |P | partitionings H1, . . . ,H|P | of P that satisfy

• |Hk| = k for all k ∈ {1, . . . , |P |}, in particular this means that H1 = {P} and
H|P | = {{x} | x ∈ P},
• and Hk = Hk−1\{A}∪{A1, A2} for all k ∈ {2, . . . , |P |}, with A ∈ Hk−1 and two
clusters A1, A2 ∈ Hk with A = A1∪̇A2.

Let Hk be one of the clusters in the hierarchy, and assume that we name its clusters
C1, . . . , Ck. Then we define r(Hk) to be the maximum radius of the clusters if we
choose centers optimally, i.e., r(Hk) := maxi∈[k] minc∈Ci

maxx∈Ci
d(x, c).

We say that an hierarchical clustering H1, . . . ,H|P | is α-competitive if

r(Hk) ≤ α · r(Copt
k )

for all k ∈ [|P |] and optimal solutions Copt
k .

Definition 14 is fairly complex. Each Hk is a partitioning of P , i.e., it contains k sets
that are disjoint and whose union is P . To compute the cost of such a clustering, we
consider optimal centers: For each cluster in a clustering, we pick the point in the
cluster which minimizes the 1-center cost of that cluster. These centers may change
between the levels of the hierarchy. So our notion of hierarchical clustering is different
from incremental clustering in two ways: Firstly, we require the clusters themselves
to be hierarchically compatible, which is a stronger requirement than having nested
center sets. But secondly, we do not require the centers to stay the same, so here we
require less. For each level, we may completely change our choice of centers.

Gonzalez’ algorithm will again be useful for our goal to find a good hierarchical clus-
tering. However, this time the farthest first traversal is only the first building block of
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Figure 2.3: Continuation of Figure 2.2 as an example for a full farthest first traversal.



16 2. The happy world of k-center

the algorithm. The incremental clustering computed by Gonzalez’ algorithm has the
properties that we investigated above, in particular, {x1, . . . , xj} is a 2-approximative
solution for the k-center problem with k = j. However, the the clusters induced by
{x1, . . . , xj} for different values of j are in general not hierarchically compatible with
each other. For example, the cluster that was associated with xj in the j-clustering
may split up when assigned optimally to the first j − 1 centers.

Still, we will make use of the incremental clustering. Say that the full farthest first
traversal outputs the order x1, . . . , x|P | and the values R2, . . . , R|P |. We now find a
good hierarchical clustering in three more steps.

I. Levels of granularity The full farthest first traversal provides us with |P | clus-
terings of decreasing cost: The first one is the 1-center clustering where every point is
assigned to x1, the second clustering is induced by assigning every point to either x1
or x2, and so on. The costs of these solutions are R2, . . . , R|P | for k = 1, . . . , |P | − 1.
[Recall that Ri is the cost of the (i − 1)-clustering, since it is the maximum distance
between any point to the centers in {x1, . . . , xi−1}.] The clustering for k = |P | has
cost 0 since every point has its own cluster. We now group the points into levels with
the goal that the corresponding Ri values have roughly the same cost for points in the
same level. The largest Ri value is R2, and we also call this value R, i.e., R = R2.
The formal definition of the levels is:

L0 = {x1}, Lj =
{
xi | Ri ∈

(
R

2j ,
R

2j−1

]}
for all j ≥ 1.

The first point x1 is special because it does not have an Ri value (these start at
i = 2). Thus, x1 gets its own special level L0. The remaining points are partitioned
into the levels according to their Ri in an exponentially decreasing manner, based on
R = R2. L1 contains all points xi with R/2 < Ri ≤ R. This in particular includes
x2 since R2 = R, and it may or may not include further points. L3 contains all xi
with R/4 < Ri ≤ R/2, and in general, Lj contains all xi with R/2j < Ri ≤ R/2j−1.
Figure 2.4 depicts the resulting levels for the points in our ongoing example.

Notice that we do not give an upper bound on j, i.e., on the maximum level index.
Indeed, we do not know any such bound: The cost of the (|P | − 1)-center clustering
may be arbitrarily small compared to the cost of the 1-center clustering. However,
at most |P | of the levels are non-empty because there are only |P | points that are
assigned to levels. Furthermore notice that for all points in the same level, the Ri

value is of a comparible magnitude, more precisely, they are all within a factor of 2 of
the left interval boundary.

For use in the next paragraph, we define a function L : {x1, . . . , x|P |} → N≥1 which
gives the index of the level that a point is in, i.e., L(xi) = j when xi ∈ Lj.

II. The parent function We need the levels of granularity in order to define a
mapping that we call the parent function. It assigns a parent to every point in P . For



2.4. Incremental and hierarchical clustering 17

c12

c16

c9

c10

c4

c14

c8

c17

c6

c13c1

c3

c5

c11
c15

c7

c2

L0 = {c1} L1 = {c2} L2 = {c3, c4, c5} L3 = {c6, c7, c8, c9}
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Figure 2.4: Continuation of Figure 2.3, showing the levels of all points.

every i ∈ {2, . . . , |P |}, we define

parent(xi) := arg min{d(xi, y) | y ∈
L(x)−1⋃
j=0

Lj}.

For x1, we set parent(x1) := x1, so x1 is mapped to itself. For all xi 6= x1, the parent
of xi is its closest point among all points in a level with lower index than L(xi). Notice
that this means that the parent is a point x` with ` < i, and that among all points
x` with ` < i we exclude exactly those that are in the same level as xi itself. In our
example, the parents are as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
parent(xi) – 1 1 1 2 3 2 4 5 8 5 8 6 12 11 6 6

Notice that the parent does not have to be in the level directly before the level of x,
it can be in any level with a lower index. For example, the parent of c16 ∈ L5 in our
example is c6 ∈ L3. This is important, since it allows us to show the following bound
for the distance between a point and its parent.

Lemma 15. For all x ∈ P ,

d(x,
j⋃

j′=0
Lj′) ≤

R

2j and d(x, parent(x)) ≤ R

2L(x)−1 .

Proof. This is a property of the farthest first traversal. Let x` be the point with highest
index in Lj. Then all points are at distance R`+1 from {x1, . . . , x`} =

j⋃
j′=0

Lj′ , because
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R`+1 is the distance that x`+1 had to this solution. Furthermore, x`+1 is not in Lj, so
its distance R`+1 is at most R/(2j). We conclude that

d(x,
j⋃

j′=0
Lj′) ≤ R`+1 ≤

R

2j

for all x ∈ P . Furthermore, parent(x) is the closest point to x in ⋃L(x)−1
j=0 Lj, so it

follows directly that

d(x, parent(x)) = d(x,
L(x)−1⋃
j′=0

Lj′) ≤
R

2L(x)−1

is true for all x ∈ P .

III. The full algorithm The final algorithm computes the above described levels
and the parent function, and then uses the parent function to compute a hierarchical
clustering. This is the full pseudo code:

hierarchical-kcenter(a finite metric space (P, d))
1. Compute x1, . . . , x|P | and R2, . . . , R|P | by calling

full-farthest-first-traversal((P, d))
2. Set R := R2 and set L0 := {x1}, L(x1) = 0
3. For all j ≥ 1, set Lj = {xi | Ri ∈ ( R2j ,

R
2j−1 ])}, and set L(xi) = j iff xi ∈ Lj

4. For all x ∈ P , set parent(x) := arg min{d(x, y) | y ∈ ⋃L(x)−1
j=0 Lj}

5. Set Ci = {xi} and H|P | = {Ci | i ∈ [|P |]}
6. For k = |P | − 1 to 1 do
7. Notice that xk+1 is the center of the cluster Ck+1 to be reassigned
8. Let xp = parent(xk+1) be the parent of xk+1, notice xp ∈ Cp
9. Set Cp = Cp ∪ Ck and Hk = {Ci | i ∈ [k]}
10. Return H1, . . . ,H|P |

In Lines 1-4, the algorithm computes the incremental clustering by using Gonzalez’
algorithm, then derives the levels of all points and computes the parent function.
The remaining steps compute the actual hierarchical clustering. The process starts
with H|P |, the partitioning into singleton clusters, i.e., into Ci = {xi}. Now the
algorithm creates the clusterings with less clusters iteratively. It always removes the
last clustering (according to the numbering), and merges it with a clustering that is
lexicographically before it. This is done by considering the parent xp = parent(xj+1)
and adding the points in Cj to Cp (which is the cluster that contains xp and was
originally initialized by Cp = {xp}). The cluster Cj+1 is then dissolved, and the
clustering with i clusters consists of the updated clusters C1, . . . , Cj. Figure 2.5 shows
the hierarchical clustering that this procedure creates for our example point set (notice
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Figure 2.5: Continuation of Figure 2.4, depicting the resulting hierarchical clustering.
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Figure 2.6: Continuation of Figure 2.5, depicting the clustering for k = 9.

that the picture does not uniquely define all intermediate clusterings, although the
algorithm does, since the order is not depicted for unrelated sets). Figure 2.6 shows
one specific clustering from the hierarchy, namely the clustering for k = 9.

– end of Lecture 2 –

By Lemma 15, we know that the first time that a point is reassigned (then, to its
parent), the distance to its new center is relatively small: It is at most R/(2L(x)−1).
Before we proceed, let us briefly discuss what this means. Assume that x = xi. Since
x is on level L(x), we know that Ri ∈ ( R

2L(x) ,
R

2L(x)−1 ]. Now notice that Ri is the cost
of the Gonzalez’ solution for k = i− 1. At the point when we reassign x = xi for the
first time, we compute the (i − 1)-clustering. The cost of this clustering is Ri. We
conclude that the (i − 1)-clustering of Gonzalez costs Ri >

R
2L(x) = 2 · (R/(2L(x)−1)).

So, compared to the Gonzalez’ solution, x now has at most twice the distance to its
closest center in the (i − 1)-clustering. [Since Gonzalez’ itself is a 2-approximation,



20 2. The happy world of k-center

this means that the distance between x and its closest center is at most 4 times the
optimum maximum radius.]
Now the crucial question is: What does it mean for the radius that points are poten-
tially reassigned multiple times? The key feature of the algorithm is that two solutions
in different levels differ exponentially with respect to their cost. Thus, if a point is
reassigned again and again, then the additional distance incurred by the first reassign-
ments plays a smaller and smaller role compared to the later clusterings. Consider c15
in our ongoing example. Its parent is c11, the parent of c11 is c5, the parent of c5 is c2,
and the parent of c1 is c1. This means that c15 is reassigned four times. Say we are
interested in the clustering for k = 4, which is created when c5 stops being a center,
which in particular means that c15 is reassigned for the third time, namely to c2. By
the triangle inequality, we know that

d(c15, c2) ≤ d(c15, c11) + d(c11, c5) + d(c5, c2).

Furthermore, we know that c15 ∈ L5, c11 ∈ L4, c5 ∈ L2 and c2 ∈ L1, implying that

d(c15, c11) + d(c11, c5) + d(c5, c2)

≤ R

2L(c15)−1 + R

2L(c11)−1 + R

2L(c5)−1

≤R24 + R

23 + R

21 ≤ R.

Since c5 ∈ L2, R5 ∈ ( R22 ,
R
21 ], meaning that the 4-clustering costs at least R/4. So even

though we did three reassignments, the bound only doubled compared to the distance
between c5 and its direct parent. The following theorem shows that in general, the solu-
tion for any k has a radius which is at most 4 times the radius of Gonzalez’ solution with
the same number of clusters. Since Gonzalez’ is guaranteed to be a 2-approximation,
we conclude that the hierarchical k-center algorithm is 8-approximative.
Theorem 16. Algorithm hierarchical-kcenter((P, d)) computes a hierarchical clus-
tering on (P, d) which is 8-approximative as defined in Definition 14.

Proof. The output of Algorithm hierarchical-kceter is a hierarchical clustering by
definition. We now fix a number k ∈ N≥1 and show that the k-clustering Hk contained
in the hierarchy has a maximum radius which is at most 4 times as large as the
maximum radius of the k-clustering computed by Gonzalez’ algorithm.
To show this, we briefly use an extension of the parent function which we define
inductively. The function parent1 is just the parent function, defined by parent1(x) =
parent(x) for all x ∈ P\{x1}, and parent(x1) = x1. The function parent0 is the
identity, i.e., parent0(x) = x for all x ∈ P . The function parenti for i > 1 results from
applying the parent function i times. More precisely, parenti results from parenti−1 by
setting parenti(x) = parent(parenti−1(x)) for all x ∈ P with x 6= x1 and parenti = x1.
Claim 17. Let x ∈ P , i ≥ 1, y′ = parenti−1(x) and y = parent(y′) = parenti(x).
Then

d(x, y) ≤ R

2L(x)−1 + R

2L(x)−2 + R

2L(x)−3 + . . .+ R

2L(y′)−1 =
L(x)∑

j=L(y′)

R

2j−1 .
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Proof. We prove the claim inductively. For i = 1, the claim follows from Lemma 15.
Assume that that i ≥ 2 and that the claim is true for i−1. If parenti−1(x) = parenti(x),
then we are done by induction hypothesis. Otherwise, set set y′′ = parenti−2(x), thus
we also know that parent(y′′) = y′. Notice that y is in a lower level than y′, i.e.
L(y) < L(y′), by the definition of the parent function, and similarly, L(y′) < L(y′′).

x
· · ·

y′′ y′ y

parent(x) parent(y′′) parent(y′)

By induction hypothesis,

d(x, y′) ≤ R

2L(x)−1 + R

2L(x)−2 + R

2L(x)−3 + . . .+ R

2L(y′′)−1 .

By the triangly inequality, d(x, y) ≤ d(x, y′)+d(y′, y). By Lemma 15, d(y′, y) ≤ R
2L(y′)−1 .

Combining these statements shows the claim.

We want to bound the maximum radius of the k-clustering. This clustering results
from reassigning the points x|P |, . . . , xk+1, potentially multiple times. Let x be one of
these points, and let y′ be the last point among its parents which is in {x|P |, . . . , xk+1},
and y = parent(y′) be the first one that is in {xk, . . . , x1}. By Claim 17, we know that
d(x, y) ≤ ∑L(x)

j=L(y′)
R

2j−1 . We can simplify this by using Fact 2:

d(x, y) ≤
L(x)∑

j=L(y′)

R

2j−1 ≤
R

2L(y′)−1

∞∑
j=0

(1
2

)j
= R

2L(y′)−1 ·
1

1/2 = R

2L(y′)−2 .

The radius of the k-clustering {x1, . . . , xk} is Rk+1. Now the crucial observation is
that since y′ is still in {x|P |, . . . , xk+1}, its level L(y′) is at least L(xk+1), i.e., L(y′) ≥
L(xk+1), and

d(x, y) ≤ R

2L(y′)−2 ≤
R

2L(xk+1)−2 .

Since Rk+1 ∈ ( R

2L(xk+1) ,
R

2L(xk+1)−1 ], we get that

d(x, y) ≤ R

2L(xk+1)−2 = 4 · R

2L(xk+1) < 4 ·Rk+1.

This is true for all points x ∈ P , thus the maximum radius of the solution is bounded
by 4 times the maximum radius of the Gonzalez’ solution, which is at most 2 times
the maximum radius of an optimal solution. The theorem follows.

2.5 Another elegant 2-approximation

In this section, we see another 2-approximation algorithm for the k-center problem. It
is a little more complicated to state, but will give us new insights to the problem. It
is based on the following crucial observation.
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Observation 18. There are only O(|P |2) possible values for the maximum radius of
the optimal solution for the k-center problem on (P ,k).

For any set P and any set of centers C ⊂ P , the k-center objective value is a distance
between a pair of points, and there are only O(|P |2) such pairs. Thus, we can ‘guess’
the optimum value. This is a technique often applied: One shows that the number
of possible values for some quantity is bounded, iterates through all of them and can
then perform an algorithm with the assumption that the current guess is correct.

In the case of k-center we use our guess to build a so-called threshold graph. Let τ be
any pairwise distance between points in P . Then the threshold graph Gτ contains an
edge between two points iff their distance is at most τ .

Definition 19. Let (P, d) be a metric space, and let τ ∈ {d(x, y) | x, y ∈ P}.

The threshold graph Gτ = (P,Eτ ) is defined by Eτ = {{x, y} | x, y ∈ P, d(x, y) ≤ τ}.

Based on the threshold graph, we define a structure called two-hop graph. For that,
we use the following definition which we reuse later on.

Definition 20. For any graph G = (V,E), we define Gi = (V,Ei) recursively by
Ei = Ei−1 ∪ {{x, y} | x, y ∈ V ∧ ∃z ∈ V : {x, z} ∈ E ∧ {z, y} ∈ Ei−1}.

The two-hop graph is the graph G2
τ = (P,E2

τ ), i.e., two points x, y ∈ P are connected
in G2

τ if they are connected in Gτ or if there is a third point to which both of them
are connected in Gτ . Thus, the distance between x, y with {x, y} ∈ E2

τ is at most 2τ .

Assume that τ is the optimum value, and that C is an optimum k-center clustering for
P . Then for every point x in P , there is a center c in C such that x and c are adjacent
in Gτ . Furthermore, if two points x, y ∈ P have the same closest center in C, then x
and y are adjacent in G2

τ . Or, interpreted in a different way: Two points that are not
adjacent in G2

τ can not be in the same cluster in any solution of maximum radius τ
since there is no point which is in distance ≥ τ of both of them. As a consequence,
a 2-approximative solution for the k-center problem can be computed by finding a
maximal independent set in G2

τ . Before we formally prove this statement, recall the
definition of independent sets.

Definition 21. Let G = (V,E) be an unweighted undirected graph. A set I ⊆ V is an
independent set if for all u, v ∈ I, {u, v} /∈ E, i.e., no vertices in I are adjacent.

When we talk about maximal independent sets, we mean that the set is inclusionwise
maximal. Note that this is a different requirement than asking for a maximum indepen-
dent set, which is an independent set of maximum cardinality. Computing maximum
independent sets is NP-hard. In contrast to this, inclusionwise maximality means that
no element can be added without destroying independence, and an independent set
with this property can be found greedily.

Definition 22. An independent set I in a graph G = (V,E) is maximal if for every
u ∈ V \I, I ∪ {u} is not an independent set.
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maximal-independent-set(G = (V,E))
1. Set I = ∅ and T = V .
2. Repeat
3. Choose u ∈ T arbitrarily and set I = I ∪ {u}.
4. Set T = T\{v ∈ T | v = u ∨ {u, v} ∈ E}.
5. Until T = ∅
6. Return I

Observation 23. Algorithm maximal-independent-set(G = (V,E)) computes a
maximal independent set in G.

Proof. Observe that whenever a vertex u is added to I, all its neighbors are removed
from T . Thus, since vertices are only added if they are still in T , the algorithm
always maintains the property that I is independent. Furthermore, every vertex that
is deleted from T has a neighbor in I and adding it to I thus destroys independence.
This means that I is a maximal independent set.

Now we prove that a maximal independent set in G2
τ provides a 2-approximation for

the k-center problem.

Lemma 24. Let (P, d), k be an input for the k-center problem, and assume that τ is
the maximum radius of an optimal solution to the k-center problem on (P, d), k. Then

1. any independent set in G2
τ has cardinality at most k, and

2. any maximal independent set is a feasible solution to the k-center problem with
maximum radius 2τ .

Proof. Let I be any independent set in G2
τ and assume that |I| > k. Then I contains

at least k+ 1 points which have the property that no two of them can share the same
closest center in the optimum solution (otherwise, they would be connected in G2

τ ).
This is a contradiction since there are at most k clusters in the optimum solution.
This proves 1.

Now assume that I is a maximal independent set and that there is a point x which
is not within distance ≤ 2τ of any point in I. Then x can be added to I without
destroying independence. This is a contradiction to the assumption that I is maximal.
This proves 2.

Lemma 24 gives rise to the following algorithm.
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k-center-via-thresholding(a finite metric space (P, d), k ∈ N≥1)

1. Compute a list L of all pairwise distances d(x, y) for x, y ∈ P , x 6= y

2. Set τmin := maxL and Cmin := {x} for an arbitrary x ∈ P
3. For τ ∈ L do
4. Compute C ⊆ P by calling maximal-independent-set(G2

τ)

5. If |C| ≤ k and τ < τmin, set τmin = τ and Cmin = C.
6. Return Cmin

An algorithm along this lines was first published by Hochbaum and Shmoys [HS85].

Theorem 25. Algorithm k-center-via-thresholding((P, d), k) computes a 2-
approximation for the k-center problem.

Proof. The algorithm computes a maximal independent set in G2
τ for all possible

choices of τ as a pairwise distance between points in P . Since the optimum solu-
tion is a pairwise distance between points in P , the algorithm in particular performs
one iteration where τ is indeed the optimum value.

Let I∗ be the solution computed by maximal-independent-set(G2
τ) in the iteration

where τ = r(Copt
k ). By Observation 23, I∗ is an independent set in G2

τ . By 1 of
Lemma 24, any independent set has cardinality ≤ k, so in particular, |I∗| ≤ k. This
means that I∗ is a feasible solution to the k-center problem on (P, d), k. Furthermore,
by 2 of Lemma 24, the maximum radius of I∗ is at most 2τ . Since τ is the optimum
value, 2τ is at most twice the optimum value.

The solution that is finally output may not be this solution, but since we choose the
solution with minimum τ that satisfies that the cardinality is at most k, this can only
improve the final output.

Compared to Gonzalez’ algorithm, the thresholding algorithm for k-center seems com-
plicated. However, we have now learned a lot about the structure of optimal solutions
for k-center, and this knowledge will prove important for the next chapter. In fact,
Gonzalez’ algorithm is in some way a special case of the thresholding algorithm. By
always choosing the point that is farthest away, it implicitly ensures that the point is
independent of the previous points in G2

τ (for τ being the optimum value) as long as
such a point exists. If no such point exists, then Gonzalez’ algorithm already found a
maximal independent set and simply adds additional centers until the cardinality of
the center set is k. (We could similarly add additional centers to the solution of the
thresholding algorithm if |I∗| < k). This can only improve the solution. So, Gonzalez’
algorithm is one way to compute a maximal independent set (plus some extra centers),
but the thresholding algorithm shows that there is a bit more flexibility in the choice of
the centers than always choosing the one that is farthest away. Instead, any maximum
independent set in G2

τ can be chosen as the center set.
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2.6 A streaming algorithm for k-center

In the streaming model, we want to (approximately) solve problems in one pass over
the input data.1 There are different scenarios that motivate this model: In some
applications, data is actually created at a speed that is so large that the data can
not be stored. It is only available at the time of creation, and algorithms have to
immediately process and filter it. This is for example the case for CERN’s Large
Hadron Collider. Another (and maybe more common) motivation is that nowadays,
data is often of a size that may still fit on our hard drive, but not at all into the main
memory of our computer.

The practical efficiency of algorithms that constantly read from the hard drive is so
poor that streaming algorithms provide an immense speed-up because they only read
every data point once from the hard drive, and this happens in blocks. The latter
requirement is important, and it means that usually, we have to assume that the order
of the points is given to us – randomizing or sorting the data requires additional passes
over the data.

One-pass algorithms are not necessarily linear since could theoretically do extensive
computations for each new data point. However, most of the time, this is not the
case, and algorithms developed theoretically in the streaming model tend to be fast in
practice as well. That has to do with the fact that they store very little data, and even
doing much with this little amount of data is still quick. By saying we only want to
do one pass over the data, we implicitly say that we do not want to store very much.
We would like to store at most as much as fits into the main memory in order to avoid
cache misses which would cause additional reads from the hard drive.

The aim when developing algorithms in the streaming model is to find algorithms
that store as little as possible. How much do we need to store? That depends on
the problem. For approximately solving k-clustering problems, we need at least Ω(k)
space, since the desired output itself consists of k centers. The storage may also (need
to) depend on the amount of data that the algorithm processes. A typical goal when
designing streaming algorithms is that after reading n points of data, the storage
requirement is a polynomial in log n. Notice one detail in this formulation: we do not
talk about the size of a data set, instead, we assume the view that the data is a stream,
and we are interested in statements that hold after each data point, at which point
the current length of the stream is the quantity which we compare our storage to.

For k-center, the streaming model is not well-defined without further considerations.
Imagine an input to the k-center problem in the general metric case. It consists of a
point set P and a metric d. If the points now arrive one by one, how do we get access
to the metric? It seems unlikely that we would have the pairwise distances in the main
memory if P itself is too large to fit into the memory.

1There exist streaming models where this requirement is relaxed and a small number of passes over
the data is allowed. For some problems, that is unavoidable because they cannot be (approximately)
solved in one pass over the data. However, for the problems considered in this lecture, we restrict
the streaming model to one pass only.
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So in this section, we assume that we have some sort of oracle access to the distances.
That may seem absurd at first. However, if the data is for example from Rd, then
the oracle would just find the distance d(x, y) between points x, y ∈ Rd by computing
the Euclidean distance between them. The Euclidean space and distance may not
be the modeling of our choice in a given application, but it is reasonable to assume
that we have a way to compute a distance between two data points, instead of being
given a finite metric space in form of a matrix or graph. Notice that this may require
that we store more information on a point than just its number: For points in Rd,
storing a point needs Θ(d) space. For this reason, we will measure the storage of our
k-clustering streaming algorithms in terms of the number of points that we store, not
in terms of the actual storage required.

To summarize, a streaming algorithm for a k-clustering problem

• has access to a distance oracle,
• specifies the steps to be done after reading a new input point,
• stores very little (at least Ω(k) points and at most O(poly(k · log n)), and
• is able to provide a solution for the k-clustering problem at any point in time.

– end of lecture 3 –

A streaming approximation algorithm for k-center

The following algorithm is due to Charikar, Chekuri, Feder and Motwani [CCFM04].
While not originally stated as a streaming algorithm, their algorithm can be formulated
in the streaming model in a straightforward way as we see in the following.

Before the streaming algorithm is ready, the following routine is called to initialize
some variables, in particular k, the number of clusters. This number is now fixed
during all computations done on the following data stream.

init(k ∈ N≥1)

1. Store the number k
2. Set C := ∅, ` = 0 and init := true

Now the processing can start. We assume that the points come in some given order,
and that for each point, the routine update is called (after the routine has finished for
the previous point). This function has two modes: While reading the first k points, it
simply stores the read points in C. Notice one detail: If a point arrives multiple times,
the copies are of course ignored. Storing the first k distinct points is the only way to
achieve any approximation since during this phase, the optimum solution (place the
centers on the points) has value zero.

That changes when C contains k points and a new point x with x /∈ C arrives. This is
the first time when any optimum solution has a non-zero cost. We can determine an
optimum solution in this situation: It results from merging two points with minimum
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distance. The function update now observes that the initialization phase has ended,
adds x to C, removes one of the points of a closest pair from C and initializes a value
` to the smallest pairwise distance. Now |C| ≤ k is reestablished.

In the second mode, update ignores x if and only if there is a point in C which is at
distance at most ` from x. Ignoring means that x already has a good center, so we do
not need to do anything when processing x. If, however, d(x,C) > `, then ignoring x
would increase the radius of the solution in an uncontrolled fashion. Thus, x is added
to C. The function ends by calling check, which we describe below, and which ensures
that |C| ≤ k is reestablished if necessary.

update(a point x from a metric space)

1. If (init = true) then
2. If x /∈ C, add x to C
3. If |C| = k + 1 then
4. Set ` to the closest pairwise distance between points in C
5. Remove one point of a closest point pair from C

6. Set init := false

7. Else
8. If d(x,C) > 2` then
9. Add x to C
10. check()

It remains to specify check. This function reduces the number of centers if necessary.
It only has three lines: Check if |C| > k, and if so, replace C by a maximum indepen-
dent set in G2` (Note the following subtlety: We compute the independent set in G2`,
the threshold graph where points are connected iff their distance is at most 2`, and
not in G2

` , the two-hop graph. If two points are connected in G2
` , then they are also

connected in G2`, but the reverse statement is not true.), and finally set C = I and
` = 2`. These steps are repeated until |C| ≤ k. Notice that one iteration may not es-
tablish |C| ≤ k if the pairwise distances between the points in C are much larger than
`. However, once ` is at least half the smallest pairwise distance, the cardinality of
C decreases. Notice that in order to implement check efficiently, one should compute
the break point beforehand and directly increase ` sufficiently, but for the purpose of
this analysis, considering the process as having several iterations is convenient.

check()

1. While |C| > k do
2. Compute I ⊆ C by calling maximal-independent-set(G2`(C))
3. Set C := I and ` = 2 · `

For the sake of completeness, we also provide the following function which outputs
the current solution. This function can be called at any time; if called while update
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is still executed, it may however give a solution with k + 1 centers. It should only be
called between the executions of update.

solution()

1. Return C

For the following analysis, we denote the set of the first i ≥ 1 points in the stream by
Pi. Since we now deal with multiple point sets, we use the more detailed notation

r(C,Pi) := max
x∈Pi

min
c∈C

d(x, c)

for the maximum radius of the solution C ⊂ Pi with respect to the points in Pi.

Lemma 26. For every i ≥ 1, after processing the first i points in the stream with
update, the the following invariants hold:

1. The maximum radius r(C,Pi) is at most 2`.
2. All points in C have a pairwise distance of at least `.
3. It holds ` ≤ 4 · r(Copt

k , Pi), where Copt
k is an optimal solution for the k-center

problem on Pi. Thus, `/4 is a lower bound on the optimum value.

Proof. As long as i ≤ k, ` is still zero, which is a lower bound for the radius of
any k-center solution, and also for all possible pairwise distances between the points.
Furthermore, the radius r(C,Pi) is also zero. Thus, all invariants are true.

For i = k + 1, ` is set to the smallest distance between any pair of points among the
first k + 1 points. Notice that any k-center solution on Pk+1 has to place two of the
first k + 1 points into the same cluster, and only the centers from Pk+1 are available.
Thus, the smallest pairwise distance is the optimum value for k-center on Pk+1, it
holds ` = r(Copt

k ). The point that is removed from C to reduce the number to k is a
point who has a neighbor at distance ` (which remains in C), so r(C,Pk+1) = ` holds
after removing it. Furthermore, all other points have a pairwise distance of at least `.
We conclude that all invariants are again true after the (k + 1)th point.

Now fix any i > k + 1 and assume that the invariants are true for i − 1. If the ith
point xi is ignored by update, meaning that line 8 produced false, then the new
point is within distance 2` of a point in C. Since r(C,Pi−1) ≤ 2`, and d(xi, C) ≤ 2`,
r(C,Pi) ≤ 2`. No new point is added to C, so check() is not called, and the optimum
value can only increase, so all invariants are again true.

Now if d(xi, C) > 2`, then xi is added to C. This only affects invariant 2., and this
invariant stays true: the point is added to C because it is at distance > 2` > ` of any
point in C. So all invariants are true before check() is called.

Now we consider what happens during the execution of check. We know that the
invariants are true when we enter the function. Now we show that the invariants are
true after each iteration of the while-loop. So assume that we are in line 1 of check
and all invariants are true. If |C| ≤ k, nothing happens and we are done. If |C| > k,
we observe that because of invariant 2., this means that we have at least k + 1 points
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which have a pairwise distance of at least ` (in fact we have exactly k+1 points because
check is called after every point insertion). Since any optimum solution has to place
two of them into the same cluster, r(Copt

k , Pi) ≥ `/2. Line 2 of check replaces C by
an independent set I in G2`. All points in I have a pairwise distance of more than 2`.
Furthermore, every point in C\I has a distance of at most 2` to its closest point in I.
Now let x ∈ Pi\C be a point that has been deleted or removed at an earlier point in
time. By invariant 1., d(x,C) ≤ 2 · `. By the triangle inequality, d(x, I) ≤ 4 · ` since
every point in C has distance at most 2` to I. We have now seen:

• for any optimum solution Copt
k , r(Copt

k , Pi) ≥ `/2,
• all points in I have a pairwise distance of more than 2`, and
• the maximum radius of the solution I is bounded by r(I, Pi) ≤ 4`.

This means that after line 3, where C is set to I and ` is replaced by 2`, all invariants
are again true.

We have already shown our main result, the following theorem is a corollary: Invariants
1. and 3. imply that after point i is fully processed, we have r(C,Pi) ≤ 2·` ≤ 8·r(Copt

k ).

Theorem 27. For all i ≥ 1, if the first i points have been processed by update, then
the solution C = solution() is an 8-approximation for the k-center problem on Pi.
The algorithm stores Θ(k) points.

2.7 The k-center problem with outliers

[In the winter semester 2017/2018, the section on k-center with outliers is excluded
from possible questions in the oral exam.]

In this section, we apply our knowledge about the structure of the k-center problem
to develop an approximation algorithm for a variant of the k-center problem.

Definition 28. Let (P, d) be a metric space, let k, z ∈ N≥0 be numbers. The k-center
problem with outliers is to compute a set C ⊆ P with |C| = k and a set of outliers
Z ⊆ P with |Z| ≤ z such that

max
x∈P\Z

min
c∈C

d(x, c)

is minimized.

The k-center problem with outliers allows z points to be marked as outliers. They are
ignored when computing the maximum radius of a solution. Why do we say that this
adds a constraint to the problem? That is because we can also view it differently: The
k-center problem with outliers asks for k′ = k + z centers, but z of these centers may
only serve themselves. Thus, we have the additional constraint that z centers can not
serve other points.

– end of lecture 4 –
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The k-center problem with outliers can be 2-approximated [CGK16]. However, this
result is a special case of an algorithm for a much more general case (the non-uniform
k-center problem), and does not fit too well here. Instead, we will consider an easier
variation which is based on the algorithm by Hochbaum and Shmoys and gives a
3-approximation for the problem.

The main algorithm is very similar to the thresholding algorithm for the standard
k-center problem:

thresholding-with-constraints(a finite metric space (P, d), and k, z ∈ N≥1)

1. Compute a list L of all pairwise distances d(x, y) for x, y ∈ P , x 6= y

2. Set τmin := maxL, Zmin = ∅ and Cmin := {x} for an arbitrary x ∈ P
3. For τ ∈ L do
4. Compute (C,Z) with C,Z ⊆ P , |Z| ≤ z

by calling ind-set-outlier(G,F,z,τ)

5. If |C| ≤ k and τ < τmin, set τmin = τ , Zmin = Z and Cmin = C.
6. Return Cmin and Zmin

Aside from the fact that we have to keep track of the outlier set Zmin in addition to
I, the main change is that we use a different subroutine to compute the actual center
set. The idea of the algorithm is to try to find the center of an optimal cluster (or a
similarly good point) by picking a point that has many points close to it. Since we
have a guess τ for the optimum value available, close just means that the points are
within distance τ . In the subroutine, we store all yet uncovered points in a set T (in
the beginning, T = P ).

For any x ∈ P , we then count the number of uncovered points that x has in its
neighborhood. More precisely, we determine the cardinality of the set

N(x) = {z ∈ T | d(x, y) ≤ τ}

for all points in P . We also call N(x) the direct neighborhood of x. While the direct
neighborhood is needed for determining the next center, we need the extended neigh-
borhood of a point x ∈ P for deciding which points shall now be considered as covered.
The extended neighborhood is given by

E(x) = {z ∈ T | d(x, y) ≤ 3τ}

Here is the subroutine that we use:
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ind-set-outlier((P, d), z, τ)

1. Set I = ∅ and T = P

2. Repeat
3. Choose u ∈ P with |N(u)| = max{|N(x)| | x ∈ P} and set I = I ∪ {u}.
4. Remove all vertices in E(u) ∩ T from T

5. Until |T | ≤ z

6. Return (I, T )

Routine ind-set-outlier starts by copying P to T , i.e., in the beginning, all points
are uncovered. It then repeatedly chooses a center and removes points from T which
are now considered covered. The next center u is chosen based on the size of the direct
neighborhood. One of the points with the largest direct neighborhood is selected to be
u, and then u is added to I. The next step is to compute the extended neighborhood
E(u) and to delete all points in E(u) from T . Note that E(u) is not deleted from P ;
we allow all points in P to be centers. Side remark: This means that the computed
set I will not be an independent set in G3τ (but we have a new argument to replace
our previous argumentation, so it is not a problem). It is an interesting exercise to
prove that I will be, in fact, an independent set in G2τ .

After removing E(u), the routine checks whether the number of points T is still larger
than z and, if so, repeats the process. Once |T | has decreased sufficiently, the routine
returns (I, T ). Thus by definition, Routine ind-set-outlier always computes a
solution with at most z outliers. It may, however, compute more than k centers. In
the following lemma, we show that this can not happen if the subroutine is called with
τ ≥ r(Copt

k ).

Lemma 29. If τ is at least the maximum radius of an optimal solution for the k-
center problem with outliers and forbidden centers on (P, d), z, F ⊂ P , k, then
ind-set-outlier((P, d), F,z,τ) computes (I, T ) with |I| ≤ k and |T | ≤ z.

Proof. We relate the output of the algorithm to a fixed optimal solution. An optimal
solution consists of a center set Copt and a set of outliers Zopt. We are interested in
a partitioning induced by Copt, and we name this partitioning A (so it is a set of k
disjoint subsets of P ). The union of the sets in A is P\Z.

Some more notation: For the purpose of this proof, we name the center chosen in the
ith iteration of ind-set-outlier by ui. Its direct neighborhood is abbreviated by
Ni := N(ui) and its extended neighborhood is Ei := E(ui). Furthermore, we let Ti be
the set T at the beginning of iteration i.

Our goal is now to show that routine ind-set-outlier covers at least∑A∈A |A| points
with the first k centers. That then means that the set of outliers contains less than
|P | −∑A∈A |A| ≤ z points after the kth iteration, i.e., the routine stops and returns a
feasible solution.

We make a case distinction. First, we consider all clusters A in A with the prop-
erty that at least one point from A was in the direct neighborhood of a center that



32 2. The happy world of k-center

ind-set-outlier chose in the first k iterations. We call the set of all these clusters
G ⊆ A, and the set of the remaining clusters B = A\G. For every cluster A ∈ G, we
let i(A) ∈ [k] be the smallest number for which A ∩Ni(A) 6= ∅.
What does this mean? Let x ∈ A∩Ni be the point that is in the non-empty intersection
(set i = i(A) for this paragraph). Then every point in A has a distance of at most
2τ to x, since they are in the same optimum cluster as x. But the distance between
x and ui is at most τ , since x ∈ Ni as well. This means that every point in A has a
distance of at most 3τ to ui, implying that (A ∩ Ti) ⊆ Ei. Since all points in Ei are
deleted in iteration i, this means that A ∩ Ti is deleted from T . Notice that this also
means that the i ∈ [k] with A ∩Ni 6= ∅ is unique: After the first iteration where this
happens, no points from A remain in T .
What about the points from A that were deleted from T before iteration i? Since
iteration i is the first iteration where a point from A was in the direct neighborhood
of the chosen center, points there were previously deleted were not in the direct neigh-
borhood, but only in the extended neighborhood.
Let IG = {i ∈ [k] | ∃A ∈ G : i = i(A)} and IB = [k]\IG. Then we have just shown
that ⋃

A∈G
A ⊆

 ⋃
i∈IG

Ei ∪
⋃
i∈IB

Ei\Ni

 .
Notice that |IG| ≤ |G|: while multiple clusters from G may be deleted in the same
iteration, there is only one fixed iteration that is added to IG for each A ∈ G. Thus,
also |IB| ≥ |B| is true.
Now we know that all points in ⋃A∈G A are removed and are not in T after iteration k.
What points can still be in T? Let A ∈ B be one of the optimum clusters we have not
considered so far. It may be that some of the points in A are removed during the k
iterations, which is only good for us. Indeed, we can strengthen our above statement
to:  ⋃

A∈G
A ∪

⋃
A∈B

A\r(A)
 ⊆

 ⋃
i∈IG

Ei ∪
⋃
i∈IB

Ei\Ni

 ,
where r(A) is the subset of A containing all points still remaining after iteration k.
This means that This implies that∑

A∈G
|A|+

∑
A∈B

(|A| − |r(A)|)
 ≤

∑
i∈IG

|Ei|+
∑
i∈IB

|Ei\Ni|

 ,
and now have to show that ∑A∈B |r(A)| is not too large.
Since all points in r(A) are not removed during the first k iterations, |A∩Ti| ≥ |r(A)|
holds for all i ∈ [k]. In particular, the center c(A) of A (which is a point in P and thus
always a possible center) has a neighborhood of size at least |r(A)|. Since we always
choose a point with a neighborhood of maximum size, |Ni| ≥ |r(A)| is always true: for
all i ∈ [k] and all A ∈ B. Together with the fact that |IB| ≥ |B|, this implies∑

i∈IB

|Ni| ≥
∑
A∈B
|r(A)|.
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In words, this inequality says the following: What we remove (in addition to ⋃i∈IG
Ei∪⋃

i∈IB
Ei\Ni) is at least as much as what we should remove (in addition). Formally,

we have shown that

∑
A∈A
|A| =

∑
A∈G
|A|+

∑
A∈B

(|A| − |r(A)|)
+

∑
A∈B
|r(A)|

≤

∑
i∈IG

|Ei|+
∑
i∈IB

|Ei\Ni|

+
∑
i∈IB

|Ni|

=
k∑
i=1
|Ei|,

and that completes our proof.

Lemma 29 contains the main technical step to prove the following result by Charikar
et. al. [CKMN01].

Theorem 30. Algorithm thresholding-with-constraints((P, d), F, k, z) com-
putes a 3-approximation for the k-center problem with outliers and forbidden centers.

Proof. Similarly to Observation 18, we observe that only the pairwise distances present
in (P, d) are possible candidates for the value of an optimal solution to the k-center
problem with outliers and forbidden centers on (P, d), F , k, z. Since the algorithm
thresholding-with-constraints iterates through all of them, it performs one iter-
ation of ind-set-outlier where τ is the optimum value. By Lemma 29, the center
set C computed by this call satisfies |C| ≤ k. By line 3 of ind-set-outlier, C only
contains points from P\F . By line 6 of ind-set-outlier, we know that |T | ≤ z.
Furthermore, all points not in T have been removed because they are neighbors of
a point in C in G3

τ , and are thus within distance 3τ of a point in C. Since τ is the
optimum value, C and T are a 3-approximative solution for the k-center problem with
outliers and forbidden centers. The solution that is finally chosen is either this solution
or one that is only better.

2.8 The fair k-center problem

Adding constraints to a clustering problem can mean many things. We have seen one
constraint (clustering with outliers) where we restrict the number of points that can
be assigned to some centers (a set of z centers can only be assigned at most one point,
namely themselves). Another classical variant of the k-center problem would be to add
upper or lower capacities to all centers. For example, the capacitated k-center problem
asks for a set of centers C and an assignment of points to centers such that the number
of points assigned to a center c does not violate its capacity u(c) (notice the difference
to the outlier version: The capacity is here given for each center c individually, which
is different from saying that there should be a center with at most a certain number of
points). The lower-bounded k-center problem restricts the number of assigned points
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from below, not above, by demanding that every center gets at least as many point
as its lower bound `(c) states. Both these problems can be approximated; indeed,
the lower-bounded k-center problem allows for a 3-approximation [AS16], and the
capacitated k-center problem for a 6-approximation [KS00] (matching lower bounds
are not known).

In this section, we want to study a problem that is loosely related to k-center with
upper and lower capacities, but has a very modern motivation. This is the fair k-center
problem as proposed by Chierichetti, Kumar, Lattanzi and Vassilvitskii [CKLV17].

The model for fair k-center strives to find a clustering where all clusters have the same
composition with respect to some sensitive attribute as the whole point set. As an
example, consider assigning children to kindergartens in a way that ensures that the
the number of boys and the number of girls is roughly equal.

The difficulty of the fair k-center problem depends highly on the exact mathematical
formulation. For the purpose of this lecture, we will restrict ourselves to binary at-
tributes as in the example of boys and girls. This case is significantly easier to model
and to approximate than the more general formulation where the number of different
possible attribute values is larger than two.

Definition 31. Let (P, d) be a metric space, and let a : P → {0, 1} be a mapping.
For any subset S ⊆ P we use the notations S0 and S1 to denote the sets of points with
attribute value 0 and 1, respectively, i.e.,

Sj = {x ∈ S | a(x) = j}

for j ∈ {0, 1}. Then we call

ratio(S, j) = |S
j|
|S|

the ratio of attribute value j in S, and we say that S is exactly balanced if

ratio(S, 0) = ratio(P, 0).

[This implies ratio(S, 1) = ratio(P, 1) since we only have two attribute values.] For
convenience, we assume that at least half of the points have attribute value 1 (otherwise,
we switch the naming). We say that S is (`, u)-balanced for ` ∈ [0, ratio(P, 0)] and
u ∈ [ratio(P, 0), 1] if

` ≤ ratio(S, 0) ≤ u.

Achieving exactly balanced clusters according to Definition 31 can be difficult. Imag-
ine for example a point set P with 49 points with attribute value 0 and 51 points
with attribute value 49. Then no true subset of P is exactly balanced according to
Definition 31 because a balanced cluster has to have ratio(C, 0) = 49/100, and the
only subset of P satisfying this constraint is P itself. Choosing ` and u away from
49/100 allows to split P into multiple clusters. For arbitrary ` and u, the problem can
still be complicated even for two attribute values. We define the following special case
as our variant of the fair k-center problem.
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Definition 32. Let (P, d) be a metric space, let a : P → {0, 1} be a mapping and
let k, t ∈ N≥1 be numbers (where t is such that 1

t
≤ ratio(P, 0)). The fair k-center

problem is to compute a set C = {c1, . . . , ck} ⊆ P with |C| = k and an assignment
c : P → C such that the induced clusters C1, . . . , Ck (with Ci = {x ∈ P | c(x) = ci})
are (1

t
, 1)-balanced and

r(C, c) := max
x∈P

d(x, c(x))

is minimized.

– end of lecture 5 –

Definition 32 demands a solution where the ratio of the points with attribute value
0 is at least 1/t, i.e., in any cluster we have that for each point of value 0, there are
at most t − 1 points of attribute value 1. It allows any t with (1/t) ≤ ratio(P, 0), so
the only restriction here is that we do not allow irrational numbers. Furthermore, we
drop the upper bound u and set it to 1.

Lemma 33. Assume that the center set C∗ and the assignment c∗ : C → P form
an optimal solution to the fair k-center problem on (P, d, a, k, t). Then there is an
assignment c′ : P 1 → P 0 such that

1. for all x ∈ P 0, |{y ∈ P 1 | c′(y) = x)}| ≤ t− 1, and
2. for all y ∈ P 1, d(y, c′(y)) ≤ 2r(C∗, c∗).

Proof. We construct c′ by considering each cluster in the optimum solution individ-
ually. So let S be a cluster in the optimum solution. We know that the solution is
(1
t
, 1)-balanced, so in particular, ratio(S, 0) ≥ 1/t. By definition, this means that

|S0|
|S0|+ |S1|

≥ 1
t
⇔ |S1| ≤ (t− 1)|S0|.

We can thus split S1 into |S0| groups of at most t − 1 points each, and then assign
each group to a unique point in S0. This satisfies requirement 1. For requirement 2.,
observe that all points in S have a distance of at most twice the maximum radius.

Lemma 33 ensures us that there is a good clustering into |P 0| clusters, where the
points in P 0 are the centers. This is a crucial observation since it is much easier to
find a clustering with this structure than to find a fair k-clustering directly. Using the
finer |P 0|-clustering, we can then later construct a fair k-clustering.

If we already know that the points in P 0 are supposed to be the centers, all that is left
to do is to compute the assignment of points with attribute value 1 to these centers, in
a way that ensures sufficient balance. Finding this assignment is (basically) the task
in Problem 3 on Problem Set 5, and we defer the solution to the tutorial (proof will
later be added).

Lemma 34. Let (P, d) be a metric space, let a : P → {0, 1} be a mapping and let
k, t ∈ N≥1 be numbers (where t is such that 1

t
≤ ratio(P, 0)). Assume that a set of

centers C is given, and an assignment a : P 0 → C of the points with attribute value 0
to these centers is given as well. Extending c to P 1 such that
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• all induced clusters are (1
t
, 1)-balanced, and

• the maximum radius of (C, c) is minimal
is possible in polynomial time.

Lemma 34 says that if C and c : P 0 → C are fixed, then extending c optimally is
possible in polynomial time. In the tutorial, this lemma is used in a scenario where
the points in P 0 are already assigned; here, we use it in a scenario where the points in
P 0 are the centers (and thus implicitly assigned to themselves). After using Lemma 34
to compute an assignment of then points in P 1 to the points in P 0, we use a k-center
2-approximation of our choice to cluster the points in P 0. And then, all we have to do
is to combine the two clusterings.

fair-k-center((P, d), a : P → {0, 1}, k, t ∈ N≥1)

1. Check that ratio(P, 0) ≤ 0.5 and that 1
t
≤ ratio(P, 0)

2. Find an optimal assignment c′ : P 1 → P 0 of the points in P 1 to P 0

under the condition that (c′)−1(x) ≤ t− 1 for all x ∈ P 0 (Lemma 34)
3. Call farthest-first-traversal((P 0, d),k) to compute a center set C
4. For all x ∈ P 0

5. Set c(x) = arg minc∈C d(x, c)
6. For all y ∈ P 1

7. Set c(y) = c(c′(y))
8. Return (C, c)

Theorem 35. Let (P, d) be a metric space, a : P → {0, 1} be a mapping and
t ∈ N≥1 such that 1

t
≤ ratio(P, 0). Then Algorithm fair-k-center computes a 4-

approximation to the fair k-center problem on ((P, d), a, t).

Proof. By Lemma 33, we know that it is possible to assign the points in P 1 to the
points in P 0 such that the maximum distance between any point y ∈ P 1 to its assigned
point c′(y) ∈ P 0 is at most 2r(C∗, c∗), where (C∗, c∗) is an optimal solution, and such
that for any point y ∈ P 0, (c′)−1(y) ≤ t− 1. By Lemma 34, we know that we can find
an optimal assignment of the points in P 1 to the points in P 0 under the condition that
every point in P 0 gets at most t − 1 points; such an optimal assignment then has a
radius of at most 2r(C∗, c∗) as well. So the assignment c′ computed in line 2. satisfies
that d(y, c′(y)) ≤ 2r(C∗, c∗) for all y ∈ P 1.
Next, the algorithm clusters the points in P 0 by using a 2-approximation for the
k-center problem. The optimum solution to the unconstrained k-center problem on
(P 0, 0) can only be cheaper than the solution to the fair k-center problem on the full
point set. Thus, the maximum distance between any point x ∈ P 0 and its closest
center c(x) = arg minc∈C d(x, c) in the computed set C is at most 2r(C∗, c∗).
Finally, the algorithm sets the center of any y ∈ P 1 to c(c′(y)). By the triangle
inequality,
d(y, c(c′(y))) ≤ d(y, c′(y)) + d(c′(y), c(c′(y))) ≤ 2r(C∗, c∗) + 2r(C∗, c∗) ≤ 4r(C∗, c∗),
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so every point in P 1 is at distance at most 4r(C∗, c∗) of is final center, which proves
the theorem.



Chapter 3
The exciting world of k-means

In this chapter, we consider the probably most known clustering problem: The k-
means problem. Even more famous than this problem is a heuristic for it (Lloyd’s
algorithm) which we discuss later and which is commonly often referred to as the
k-means algorithm. We will argue that nowadays, there are improvements of this
algorithm that should be considered instead of implementing the heuristic in its vanilla
version.

Furthermore, we will see how the k-means problem can be approximated in the stream-
ing model, i.e., by one-pass algorithms. The resulting combination of a practical
approximation algorithm and streaming routines lead to very powerful practical algo-
rithms for the k-means problem.

3.1 The (Euclidean) k-means problem

Here is a formal definition of the k-means problem:

Definition 36. Let P ⊂ Rd be a finite set of points from the Euclidean space and
k ∈ N≥1 be a number. The (Euclidean) k-means problem is to compute a set C ⊂ Rd

with |C| = k that minimizes

dist2(P,C) :=
∑
x∈P

min
c∈C
||x− c||2.

In the following we also use the abbreviation dist2(P, z) := dist2(P, {z}) for denoting
the sum of the squared distances of all points in P to a single point z. Furthermore,
we sometimes consider weighted k-means. Then the input point set comes together
with a weight function w : P → R, and the objective to minimize changes to

dist2(P,w,C) :=
∑
x∈P

w(x) ·min
c∈C
||x− c||2.

If the weights are integral, we can think of the weights as multiplicities.

38
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The k-means problem is NP-hard, and it is NP-hard to approximate it better than
1.0013 (see [ACKS15, LSW17]). There are at least three papers proposing constant-
factor approximation algorithms for the k-means problem, the best of which achieves
an approximation ratio of 6.357 (see [ANSW17]). All of these are based on algorithms
for the k-median problem, the close sibling of the k-means problem:

Definition 37. Let (P, d) be a metric space and k ∈ N≥1 be a number. The k-median
problem is to compute a set C ⊆ P with |C| = k that minimizes∑

x∈P
min
c∈C

d(x, c).

Compared to the k-median problem, we notice two major changes. First of all, the
metric space is the Euclidean space. That is a restriction: Instead of an arbitrary
space of which we only know that it satisfies the three axioms in Definition 1, we know
exactly how the distances are computed (see Fact reffact:euclideannormisanorm).

However, the k-means problem is not a special case of the k-median problem. On the
contrary: Firstly, the objective function considers squared Euclidean distances. These
are not metric; so while the k-means problem is based on a specific metric (Euclidean
distances), its cost is not actually metric. Indeed, the cost that a point incurs does not
satisfy the triangle inequality. This is a major challenge when adapting approximation
algorithms for k-median to k-means. Often, the way to resolve it (at the cost of a worse
bound) is to use the fact that squared distances satisfy the following relaxed triangle
inequality.

Fact 38. Let x, y, z ∈ Rd be points. It holds that

||x− y||2 ≤ 2||x− z||2 + 2||z − y||2.

Secondly, notice that the center set C can be chosen from all of Rd in the case of
the k-means problem, while in the k-median problem, it is (usually) restricted to the
input point set. For the k-median problem, an optimal solution can be computed
in time

(
n
k

)
∈ Θ(nk) by testing all possible choices of k centers from P . For the k-

means problem, it is not straightforward to obtain a similar result. It is possible test
all partitionings of P into k subsets and then finding the best center for each subset
(we see how to do this in the next section), but the running time of this is Θ(kn),
which is in general much worse than Θ(nk). Inaba, Katoh and Imai [IKI94] show how
to optimally solve the k-means problem in time nO(dk). This algorithm is based on
enumerating Voronoi diagrams.

3.2 Lloyd’s algorithm

The extremely popular heuristic often called the k-means algorithm which we discuss in
the following is usually attributed to a note by Lloyd in 1957 which was later published
in [Llo82], but it has also (independently) been discovered by Steinhaus [Ste56]. The
interested reader is referred to [Boc07] for a historical overview.
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The heuristic is based on the following extremely helpful observation which is usually
considered folklore. The following proof is similar to the proof in [KMN+04].

Fact 39. Let P ⊂ Rd be a finite point set and let µ(P ) := 1
|P |
∑
x∈P x be its centroid.

Then, every point z ∈ Rd satisfies

∑
x∈P
‖x− z‖2 =

∑
x∈P
‖x− µ(P )‖2 + |P | · ‖µ(P )− z‖2.

Notice this is the same as saying that dist2(P, z) = dist2(P, µ(P )) + |P | · ||µ(P )− z||2.

Proof. We abbreviate µ = µ(P ) during the proof. Notice that for all points x, y ∈ Rd,
it holds that ||x+y||2 = 〈x+y, x+y〉 = 〈x, x〉+2〈x, y〉+〈y, y〉 = ||x||2 +2〈x, y〉+ ||y||2.
This implies that ||x− z||2 = ||x−µ+µ− z||2 = ||x−µ||2 + 2〈µ− z, x−µ〉+ ||µ− z||2.
Furthermore, it holds that

∑
x∈P

(x− µ) =
(∑
x∈P

x

)
− |P | · µ = |P | · µ− |P | · µ = 0.

Combining both statements implies that

∑
x∈P
||x− z||2 =

∑
x∈P
‖x− µ‖2 + 2(µ− z)T

∑
x∈P

(x− µ) + |P | · ‖z − µ‖2

=
∑
x∈P
‖x− µ‖2 + |P | · ‖z − µ‖2.

Fact 39 has a lot of consequences. The most obvious consequence is that the centroid
of a point set is the best 1-means solution: The best 1-means solution is the point z
that minimizes ∑x∈P ||x − z||2. By Fact 39, this sum has a fixed part, ‖x − µ(P )‖2,
and only the additional term |P | · ‖z−µ(P )‖2 actually depends on z. It becomes zero
iff z = µ(P ). This also explains how iterating through all partitionings of P leads to
an (exponential time) algorithm that optimally solves the k-means problem. In any
optimal solution, the center of any cluster has to be chosen as the centroid of the
cluster. Thus, the optimal solution can be found by iterating through all partitionings
and optimally computing the centers for the subsets.

Another consequence of Fact 39 is that it gives rise to Lloyd’s algorithm



3.2. Lloyd’s algorithm 41

Lloyds-algorithm(P ⊂ Rd, k ∈ N≥1)

1. Choose a set of k centers C ⊂ Rd arbitrarily
2. Repeat
3. Set C ′ = ∅
4. Compute a clustering C1, . . . , Ck induced by C
5. For each i ∈ [k] do
6. If |Ci| > 0
7. Add µ(Ci) to C ′

8. Replace C by C ′

9. Until a stopping criterion is met
10. Return (C)

Algorithm Lloyds-algorithm can be implemented in different ways. Firstly, the
initial choice of centers is not specified. A common method is to choose k points
from P uniformly at random. The main improvement of Lloyd’s algorithm that we
will see later on is to replace this step by a better initialization method. Secondly, the
algorithm as stated above lets clusters run empty. A practical improvement would be
to add a completely new center to C ′ whenever a cluster ran empty. If doing this, we
again have to specify how the new center is chosen (for example, uniformly at random
from P , or along the lines of the improved initialization that we see later), and have
to make sure that this can not make the algorithm cycle (see Observation 40 below).
Thirdly, the stopping criterion is not stated. There are two common choices: Either
stopping after a fixed number of iterations I, or stopping when the solution quality
does not decrease ‘significantly’ anymore, i.e., when in an iteration, the new solution is
less than T better than the previous solution for some fixed T . Both methods need the
user to specify a parameter; specifying the number of iterations has the advantage that
the running time of the algorithm is bounded by O(Indk). Bounding the minimum
improvement should only be done based on some knowledge of the magnitude of the
optimum cost. It is also possible to run Lloyd’s algorithm until convergence.

Observation 40. After finitely many steps of Lloyd’s algorithm, C ′ = C holds before
line 8, i.e., the algorithm converges.

Proof. This is true because every iteration where C ′ differs from C improves the so-
lution. Say we start with C and assign every point to its closest center. For a given
center set, that is the best possible assignment. Now if C does not exactly contain the
centroids of the clusters, then the cost of the solution is improved when the centers
are replaced by the centroids because of Fact 39.

Further notice that after the first iteration, the algorithm only considers center sets
that are sets of centroids of a partitioning. Since every change strictly improves the
cost, we can not encounter the same centroid set again. Thus, the algorithm has to
stop after at most O(kn) iterations.
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Figure 3.1: An example with five points where the blue points form a local but not
global optimum for k = 3. (Figure copied from [Sch14].)

Lloyd’s algorithm is a local search heuristic: Given a solution for the problem, it does
a local improvement step, and when run to convergence, it produces a local optimum.
However, the quality of such a local optimum can be bad. Consider Figure 3.1: Once
Lloyd’s algorithm chooses the blue points as the centers, the solution is locally optimal,
but worse than the optimum solution by a factor of Ω(d2).

Furthermore, even though Lloyd’s algorithm often reportedly converges quickly in
many practical applications, its running time is not bounded by a polynomial in the
input size in general. Indeed, Vattani [Vat11] proposes a family of instances in R2

where Lloyd’s algorithm needs exponentially many iterations. However, in practice,
Lloyd’s algorithm is not necessarily run until convergence as we discussed above. Also,
it has been shown that the smoothed complexity of Lloyd’s algorithm is indeed polyno-
mial. Smoothed analysis provides a model for analyzing algorithms under the assump-
tion that inputs are a bit randomized and thus not completely adversarial. Details on
the smoothed analysis of Lloyd’s algorithm are discussed in the lecture Randomized
Algorithms and Probabilistic Analysis, see [RS18].

3.3 The k-means++ algorithm

The k-means++ algorithm is a combination of a powerful seeding technique called D2-
sampling and Lloyd’s algorithm. It was proposed by Arthur and Vassilvitskii [AV07]
and has had a major impact on practical and theoretical studies of the k-means prob-
lem. It is named after Lloyd’s algorithm, more precisely, after its alternative name
(k-means algorithm).

From a theoretical point of view, D2-sampling is the main contribution of Arthur and
Vassilvitskii’s work. Indeed, D2-sampling alone provides an (expected) approximative
solution as we will see in this section. From a theoretical point of view, it is not clear
that Lloyd’s algorithm improves upon the guarantee of D2-sampling in a significant
manner.

On the other hand, from a practical point of view, k-means++ is often considered as
a ‘variant’ of Lloyd’s algorithm, which just has a very good initialization. So from
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that perspective, running Lloyd’s algorithm is crucial; and indeed, when performing
experiments, it is obvious that the improvement by refining the solution with Lloyd’s
algorithm is significant.

So k-means++ should really be seen as a combination of sampling and Lloyd’s algo-
rithm, which in its entirety is a very good algorithm. At least in practical experiments,
it produces much better solutions than each of the two algorithms individually.

D2-sampling can intuitively be seen as a probabilistic variant of Gonzalez’ algorithm.
Recall that for Gonzalez’ algorithm for k-center, we pick the first point arbitrarily
and then subsequently pick the point that is farthest away from all previously chosen
centers. For objectives like k-median and k-means, we have the additional complication
that we have to take into accounts that multiple points cost more than small amounts.
Here is a small picture to illustrate this fact:

m

a

1

b

m

c

1

d

Each point has a name depicted below it, and a weight depicted above it. Assume we
were to solve k-center on this instance, run Gonzalez’ and pick a as the first center.
Then d would be chosen as the second center. This solution has a cost of 2 for k-center
which is even optimal for this instance. However, for any sum-based objective, the
solution is by a factor of Ω(m) worse than the optimum solution: All points at c have
to pay for being assigned to d, while in the optimum solution {a, c}, only two points
pay (namely, b and d).

Furthermore, we can also see at this simple example that picking the first center
arbitrarily is not a good idea, just by the same argument: If we pick arbitrarily, we
might spend one center on either b or d, and then the final solution is off by a factor
of Ω(m), no matter how we pick the second center.

D2-sampling addresses these issues. It chooses the first point uniformly at random from
P . In the above mini example, this would mean that with probability (2m−2)/m, we
choose a good first center. The remaining centers are then also chosen randomly. For
the ith center, a point from P is chosen with a probability that is proportional to its
current cost. That has the following effect: Points that are currently very costly are
more likely to be chosen. However, if there are many points at some area (for example,
in the middle of an optimum cluster), then it becomes very likely that one of these
points is chosen – even though there might be a single point somewhere which has a
higher current cost.
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D2-sampling(P ⊂ Rd, k ∈ N≥1)

1. Choose a point x1 ∈ P uniformly at random, set C1 = {x1}
2. For i = 2 to k do
3. Draw a point xi ∈ P according to the probability distribution

minc∈Ci−1 ||x− c||2∑
y∈P minc∈Ci−1 ||y − c||2

4. Set Ci = Ci−1 ∪ {xi}
5. Return Ck

Again consider the mini example: Now if a is the first center, then (assuming unit
distances between neighbored points) b costs 1, every point at c costs 22 = 4, and d
costs 32 = 9. Points at a cost nothing. So the probability to choose a point at c in the
second iteration is

4m
1 + 4m+ 9 = 1− 10

4m,

which goes to 1 when m goes to infinity.

Now our mini example is simple. In general, k-means++ does not always find perfect
centers or even a constant-factor approximation. From a theoretical point of view, it
is worse than known approximation algorithms. But compared to Lloyd’s algorithm,
k-means++ does have a bounded approximation ratio, at least on expectation. Arthur
and Vassilvitskii show the following:

Theorem 41. Let C be the solution computed by D2-sampling on P ⊂ Rd and
k ∈ N≥1. Note that C is a random variable. The expected cost of C is a O(log k)-
approximation, more precisely, it holds

E[dist2(P,C)] ≤ 8(ln k + 2) dist2(P,C∗)

where C∗ is an optimal solution for the input P , k, and ln is the natural logarithm.

3.3.1 Bicriteria approximation algorithm

We first give a bicriteria result for D2-sampling which is due to Aggarwal, Deshpande
and Kannan [ADK09]. An (α, β)-bicriteria approximation algorithm for a standard
clustering problem is an algorithm that is given P and k and computes a solution
of cost α dist2(P,C∗), where C∗ is an optimal solution for the k-means problem on
(P, k), but with β · k centers. Bicriteria algorithms are also used in other contexts;
the defining property is that the solution space is extended by relaxing some condition
in a controlled way and obtaining a solution of a cost that is good compared to an
optimal solution without the relaxation.

For our setting, this means that D2-sampling is used with a t ≥ k to obtain a solution
that is good compared to the best solution with k centers. For the analysis, we
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will compare the computed solution with an arbitrary fixed optimum solution C∗ =
{c∗1, . . . , c∗k}. As we did in the proof for k-center with outliers, we again use A to
denote a fixed clustering induced by this optimal solution.

For deriving the technical details of the analysis, we will have to compute probabilities
of hitting a point from a specific subset of P multiple times. So before we start, it is
good to observe that for any S ⊆ P and any sample x drawn with D2-sampling based
on center set Ci−1, we have

Prob(x ∈ S) =
∑
y∈S

Prob(x = y) =
∑
y∈S

minc∈Ci−1 ||y − c||2∑
z∈P minc∈Ci−1 ||z − c||2

=dist2(S,Ci−1)
dist2(P,Ci−1)

.

The general idea of D2-sampling is to try and find clusters that are still expensive and
cover them by drawing a good center for them. The following definition states what
we consider to be an expensive cluster for the course of the bicriteria analysis.

Definition 42. For a center set C ⊂ Rd, we say that a cluster Aj ∈ A is good if

dist2(Aj, C) ≤ 10 · dist2(Aj, µ(Aj)).

Otherwise, we say Aj is bad with respect to C. Furthermore, at the beginning of
iteration i of D2-sampling, we define GOODi as the set of clusters that are good with
respect to Ci−1, and BADi = A\GOODi.

So the probability to draw a point from a subset S is the share of the total cost that
it is currently contributing.

Observe that C is a 10-approximation if all clusters are good. This is the aim of the
algorithm: Continue to sample points until all clusters are good. However, that is not
necessarily possible. Assume there is a cluster which has zero cost in the optimum, but
right now costs a little but, but much less than the overall cost of the solution. Then
D2-sampling will most likely not find a point from this cluster because its probability
mass is not very large. But then again, this does not really matter because the overall
cost is not affected by this cluster, even though it is a bad cluster. So, even if some
clusters are still bad, we might have a good approximation if these clusters do not
contribute much to the overall cost. We are interested to analyze what happens if
there are bad clusters and these cause a lot of cost. The next lemma says that if the
solution is not a 20-approximation, then the point that we sample next is from a bad
cluster with constant probability.

Lemma 43. In iteration i of D2-sampling, either dist2(P,Ci−1) ≤ 20 · dist2(P,C∗),
or the probability that xi is from BADi is at least 1/2.

Proof. We show that if dist2(P,Ci−1) > 20 · dist2(P,C∗), then

Prob(xi ∈
⋃

A∈BADi

A) ≥ 1
2 .
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Observe that∑
A∈GOODi

dist2(A,Ci−1) ≤
∑

A∈GOODi

10 · dist2(A, µ(A)) ≤ 10 · dist2(P,C∗)

by the definition of good clusters and the fact that the good cluster are a subset of
all clusters. So if dist2(P,Ci−1) > 20 · dist2(P,C∗), then the bad clusters have to be
expensive:∑
A∈BADi

dist2(A,Ci−1) = dist2(P,Ci−1)−
∑

A∈GOODi

dist2(A,Ci−1) ≥ 10 · dist2(P,C∗).

This means that we can bound the probability to sample a point from a bad cluster
from below.

Prob(xi ∈
⋃

A∈BADi

A) =
∑
A∈BADi

dist2(A,Ci−1)
dist2(P,Ci−1)

≥ 10 · dist2(P,C∗)
20 · dist2(P,C∗)

= 1
2 .

So with each sample, we have a constant probability to get a point from a cluster that
is bad. However, we still have to figure out the probability that this sample is actually
a good center for that bad cluster. In order to do that, we identify a subset of points
of any cluster which contains only good centers. It is called B(Aj, α), and it is defined
in the following definition.
Definition 44. For any Aj ∈ A, define

(r(Aj))2 := 1
|Aj|

dist2(Aj, µ(Aj)) = 1
|Aj|

∑
x∈Aj

||x− µ(Aj)||2

and
B(Aj, α) := {x ∈ Aj | ||x− µ(Aj)|| ≤ α · r(Aj)}.

So r2(Aj) is the average cost of a point in Aj, and B(Aj, α) contains all points whose
cost is at most α2 times the average cost. The following lemma gives the evidence that
all points in B(Aj, α) are good centers for Aj (if α is a constant).
Lemma 45. Let Aj ∈ A and z ∈ B(Aj, α). Then

dist2(Aj, z) ≤ (α2 + 1) dist2(Aj, µ(Aj)).

Proof. The lemma is a consequence of Fact 39 together with the definitions of B(Aj, α)
and r(Aj):

dist2(Aj, z) Fact 39= dist2(Aj, µ(Aj)) + |Aj| · ||µ(Aj)− z||2

≤ dist2(Aj, µ(Aj)) + |Aj| · α2 · (r(Aj))2

= dist2(Aj, µ(Aj)) + |Aj| · α2 · dist2(Aj, µ(Aj))
|Aj|

= (α2 + 1) · dist2(Aj, µ(Aj)).
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Now that we have seen that points in B(Aj, α) are good centers, we want to lower
bound the probability of drawing one of them. First, we observe that there are many
points in B(Aj, α). This is true because if there were many points outside of B(Aj, α),
they together would cost too much; more than the cost of Aj, which is impossible.

Lemma 46.
|B(Aj), α| ≥

(
1− 1

α2

)
· |Aj|

Proof. Assume that

|B(Aj), α| ≤
(

1− 1
α2

)
· |Aj|

⇔ |Aj\B(Aj), α| ≥
1
α2 · |Aj|,

i.e., many points lie outside of B(Aj, α). By the definition of B(Aj, α), for all points
x /∈ B(Aj, α), ||x−µ(Aj)||2 > α2(r(Aj))2. Thus, our assumption the cost of the points
outside of B(Aj, α) alone already cost

∑
x∈A\B(Aj ,α)

||x− µ(Aj)||2 >
1
α2 · |Aj| · α

2(r(Aj))2

= 1
α2 · |Aj| · α

2 dist2(Aj, µ(Aj))
|Aj|

= dist2(Aj, µ(Aj)).

Thus, under the assumption that many points lie outside of B(Aj, α), we have

dist2(Aj, µ(Aj)) ≥
∑

x∈A\B(Aj ,α)
||x− µ(Aj)||2 > dist2(Aj, µ(Aj)),

which is a contradiction, and that proves the lemma.

Second, we show that the points in B(Aj, α) are not only many, but also have a high
total cost.

Lemma 47.

Prob(xi ∈ B(Aj, α) | xi ∈ Aj ∧ Aj ∈ BADi) ≥
1
10 ·

(
1− 1

α2

)
· (3− α)2.

Proof. The probability that we want to compute is:

Prob(xi ∈ B(Aj, α) | xi ∈ Aj ∧ Aj ∈ BADi) = dist2(B(Aj, α), Ci−1)
dist2(Aj, Ci−1)

.

We do that by using the following statements.

1. If we let cj = arg minc∈Ci−1 ||µ(Aj) − c||2 be a center in Ci−1 closest to µ(Aj),
then dist2(Aj, Ci−1) ≤ dist2(Aj, cj) = dist2(Aj, µ(Aj)) + |Aj| · ||µ(Aj) − cj||2 =
|Aj| · ((r(Aj))2 + ||µ(Aj)− cj||2) by Fact 39 and the definition of r(Aj).
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2. We observe that

|Aj| · ||µ(Aj)− cj||2 = dist2(Aj, cj)− dist2(Aj, µ(Aj))
≥ dist2(Aj, Ci−1)− dist2(Aj, µ(Aj)) ≥ 9 dist2(Aj, µ(Aj)),

which implies that ||µ(Aj)− cj||2 ≥ 9 · dist2(Aj ,µ(Aj))
|Aj | = 9(r(Aj))2.

3. If we pick any c ∈ Ci−1 and any x ∈ B(Aj, α), it holds that:

||x− c|| ≥ ||c− µ(Aj)|| − ||x− µ(Aj)|| ≥||µ(Aj)− cj|| − ||x− µ(Aj)||
≥||µ(Aj)− cj|| − α · r(Aj),

where the first inequality follows by the triangle inequality, the second follows
by the definition of cj, and the third follows since x ∈ B(Aj, α). This implies
that

dist2(B(Aj, α), Ci−1) ≥ |B(Aj, α)| · (||µ(Aj)− cj|| − α · r(Aj))2.

4. |B(Aj), α| ≥
(
1− 1

α2

)
· |Aj| holds by Lemma 46.

We use these facts to observe that

dist2(B(Aj, α), Ci−1)
dist2(Aj, Ci−1)

1
≥ dist2(B(Aj, α), Ci−1)
|Aj| ·

(
(r(Aj))2 + ||µ(Aj)− cj||2

)
3
≥
|B(Aj, α)| ·

(
||µ(Aj)− cj|| − α · r(Aj)

)2

|Aj| ·
(
(r(Aj))2 + ||µ(Aj)− cj||2

)
4
≥

(
1− 1

α2

)
· |Aj| ·

(
||µ(Aj)− cj|| − α · r(Aj)

)2

|Aj| ·
(
(r(Aj))2 + ||µ(Aj)− cj||2

)
=

(
1− 1

α2

)
·
(
||µ(Aj)− cj|| − α · r(Aj)

)2

(r(Aj))2 + ||µ(Aj)− cj||2

Now, although we do not know ||µ(Aj) − cj||, we know that ||µ(Aj) − cj|| ≥ 3r(Aj)
holds by 2. If we consider ·(||µ(Aj)−cj ||−α·r(Aj))2

(r(Aj))2+||µ(Aj)−cj ||2 as a function in ||µ(Aj)−cj||, we observe
(e.g., by computing its first and second derivative), that it is monotonically increasing
for ||µ(Aj)− cj|| ≥ r(Aj). Thus, we can replace ||µ(Aj)− cj|| by 3r(Aj) to obtain the
lower bound (

1− 1
α2

)
· (3r(Aj)− α · r(Aj))2

10(r(Aj))2 = 1
10 ·

(
1− 1

α2

)
· (3− α)2.

After this fairly technical lemma, we have all ingredients to show that with constant
probability, a new sample converts at least one bad cluster into a good cluster (as long
as the solution is not good already).
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Corollary 48. Assume that in iteration i it still holds that dist2(P,Ci−1) ≥ 20 dist2(P,C∗).
Then the probability that xi is in B(Aj, 1.44225) for an Aj ∈ BADi is at least 0.126.

Proof. With probability 1/2, xi is from a bad cluster which we name Aj, and with
probability at least 1

10 ·
(
1− 1

α2

)
· (3− α)2, it is in B(Aj, α). Now for α = 1.4425, we

get
1
2 ·

1
10 ·

(
1− 1

1.44252

)
· (3− 1.4425)2 ≥ 0.063.

Corollary 48 implies that the expected number of samples that we need to convert at
least one bad cluster into a good cluster is 1

0.063 ≤ 16. By linearity of expectation and
Markov’s inequality, we conclude that the probability that after 32k samples there are
still bad clusters and the cost is more than 20 · dist2(P,C∗) is at most 1/2. Details on
this are discussed in the tutorial about Problem Set 07.

Theorem 49. For t = 32k, D2-sampling(P ,t) computes a 20-approximation for the
k-means problem with probability at least 1/2.

3.3.2 A glimpse on the analysis of k-means++

We now consider to lemmata that motivate why D2-sampling proceeds in the way that
it does. We will skip the main proof, though. The following lemma is an immediate
consequence of Fact 39. It shows that the first step of D2-sampling is a good idea.

Lemma 50. Let S ⊂ Rd be a point set and let x ∈ S be a point chosen uniformly at
random from S. Then

E[dist2(S, x)] = 2 · dist2(S, µ(S)).

Proof.

E[dist2(S, x)] =
∑
y∈S

1
|S|

dist2(S, y)

= 1
|S|

∑
y∈S

∑
z∈S
||y − z||2

Fact 39= 1
|S|

∑
y∈S

[∑
z∈S
||y − µ(S)||2 + |P | · ||z − µ(S)||2

]

=
∑
y∈S
||y − µ(S)||2 +

∑
z∈S
||z − µ(S)||2

= 2 dist2(S, µ(S)).
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Now for the remaining steps, the goal of D2-sampling is to hit clusters that are not
‘covered’ yet, i.e., from which we have not chosen a point as a center yet. Now
even if this succeeds (it does not succeed necessarily, which causes the super-constant
approximation ratio), we still have to show that the point that we get from such an
uncovered cluster is a good center for that cluster. The following lemma provides
that evidence. The guarantee is weaker than in Lemma 50. That makes sense: The
probability distribution is somewhat skewed, so that we are more likely to draw points
that are further away from the mean of the cluster. However, as the following lemma
states, this effect is small enough and we still get a constant-factor approximation for
S on expectation.

Lemma 51. Let S ⊂ Rd be a point set, let C ⊂ Rd be an arbitrary finite set and
let x ∈ S be a point chosen randomly from S according to the probability distribution
where each point x ∈ S has probability

minc∈C ||x− c||2∑
y∈S minc∈C ||y − c||2

.

Then it holds that
E[dist2(S,C ∪ {x})] ≤ 8 dist2(S, µ(S)).

Proof. We approach the proof in the same way as in Lemma 50, but now have non-
uniform probabilities for the sampling, and we consider C ∪ {x} (instead of only x).
If x ∈ S is the sampled point, then the cost after adding it to C is∑

z∈S
min

c∈(C∪{x})
||z − c||2.

Thus the expression that we get for our expected cost is

E[dist2(S,C ∪ {x})] =
∑
y∈S

minc∈C ||y − c||2∑
z∈S minc∈C ||z − c||2

∑
z∈S

min
c∈(C∪{y})

||z − c||2. (3.1)

Before computing it, we find an upper bound for the term minc∈C ||y− c||2. The trick
is the following. For all z ∈ S, it holds by the relaxed triangle inequality (Lemma 38)
that

min
c∈C
||y − c||2 ≤ ||y − c(z)||2 ≤ 2||y − z||2 + 2 min

c∈C
||z − c||2,

where c(z) is a center closest to z in C. Now we sum this inequality up over all z ∈ S
and divide the resulting inequality by |S| to obtain that

min
c∈C
||y − c||2 ≤ 2

|S|
∑
z∈S

(||y − z||2 + min
c∈C
||z − c||2).

We use this to bound the term in Equation 3.1 and get

∑
y∈S

2
|S|
∑
z∈S(||y − z||2 + minc∈C ||z − c||2)∑

z∈S minc∈C ||z − c||2
∑
z∈S

min
c∈(C∪{x})

||z − c||2.
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Now we split this up into two big sums and bound each individually. The first one is

2
|S|

∑
y∈S

∑
z∈S ||y − z||2∑

z∈S minc∈C ||z − c||2
∑
z∈S

min
c∈(C∪{y})

||z − c||2, (3.2)

and the second one is
2
|S|

∑
y∈S

∑
z∈S minc∈C ||z − c||2∑
z∈S minc∈C ||z − c||2

∑
z∈S

min
c∈(C∪{x})

||z − c||2. (3.3)

For (3.2), we use that minc∈(C∪{y}) ||z − c||2 ≤ minc∈C ||z − c||2 to get that

2
|S|

∑
y∈S

∑
z∈S ||y − z||2∑

z∈S minc∈C ||z − c||2
∑
z∈S

min
c∈(C∪{y})

||z − c||2

≤ 2
|S|

∑
y∈S

∑
z∈S
||y − z||2

Fact 39= 2
|S|

∑
y∈S

dist2(S, µ(S)) +
∑
y∈S
||S| · ||µ(S)− y||2


= 4 dist2(S, µ(S)).

For (3.3), we get via minc∈(C∪{y}) ||z − c||2 ≤ ||z − y||2 that
2
|S|

∑
y∈S

∑
z∈S

min
c∈(C∪{x})

||z − c||2

≤ 2
|S|

∑
y∈S

∑
z∈S
||z − y||2

Fact 39= 2
|S|

∑
y∈S
||z − µ(S)||2 + |S| · ||z − µ(S)||2


= 4 dist2(S, µ(S)).

Adding both terms proves the lemma.

Now based on Lemma 50 and Lemma 51, the proof of the approximation guarantee
for k-means++ proceeds by showing that the expectation of the current cost develops
favorably during the k iterations. Morally, what happens is that if a new cluster is
hit by the sampling, then this new cluster is constant-approximated, and this happens
with a good probability. However, the probability to hit a already covered cluster
again is large enough to raise the expecation from constant to Hk, which translates
into the Θ(log k) approximation guarantee. We skip the details of this rather involved
inductive proof.

3.4 Dimensionality Reduction for k-means

There are two very popular methods for reducing the dimension of points in Rd:
Random projections / JL projections and principal component analysis / SVD. In this
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section, we discuss two important results about these two methods with respect to the
k-means cost function.

Before we do that, we discuss how clustering problems are usually modeled as matrix
problems. This is very helpful for describing linear projections. We start by writing
the points of the input point set into the rows of a matrix A, i.e., for a point set
P = {x1, . . . , xn}, we construct a matrix A ∈ Rn×d by

A =


x1
x2
. . .
xn

 .

Then we encode any possible solution C ⊂ Rd, |C| = k as a matrix as well, by writing
the closest center to point xi in row i of a matrix S(C):

S(C) =


arg minc∈C ||x1 − c||
arg minc∈C ||x2 − c||

. . .
arg minc∈C ||xn − c||

 .

So any solution C translates to a matrix S of rank k, which in fact consists of copies
of the same k points. Now we can express dist2(P,C) in terms of A and S(C):

dist2(A,C) =
n∑
i=1

min
c∈C
||xi − c||2 =

n∑
i=1

(xi − arg min
c∈C
||x1 − c||)2 = ||A− S(C)||2F ,

where || · ||F is the Frobenius norm (see Definition 4).

A linear map now is a matrix X ∈ Rd×d′ , where d′ is the dimension of the target space.
It may be equal to d, but that does not have to be the case.

3.4.1 The Johnson-Lindenstrauss Lemma

The first one is based on the famous Johnson-Lindenstrauss Lemma. The following
wording is inspired by Dasgupta and Gupta [DG03], who give a notably concise proof
of the Johnson-Lindenstrauss Lemma that is based on elementary building blocks. We
still skip the proof and focus on the application of the JL Lemma to the k-means
problem.

Theorem 52 (Johnson-Lindenstrauss Lemma [JL84]). For any P ⊂ Rd with |P | = n,
any constant ε ∈ (0, 1), and any number d′ ≥ d0(n, ε) for some specific d0(n, ε) ∈
Θ(ε−2 log n), there exists a linear map f : Rd → Rd′ that satisfies for all x, y ∈ P that

(1− ε)||x− y||2 < ||f(x)− f(y)||2 < (1 + ε)||x− y||2.

Furthermore, such a map can be found by a randomized algorithm with polynomial
running time and constant success probability.
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A linear map satisfying Theorem 52 can be constructed in different (usually proba-
bilistic) ways, and finding maps with good additional properties is the topic of ongoing
research. The probabilistic constructions have in common that one does not need to
know anything about the points except their number, which is a very strong advantage
of JL projections. We cite one concrete construction that is due to Achlioptas [Ach03]
and gives a random projection matrix that only consists of 1s and (−1)s.

Theorem 53. Let P ⊂ Rd be a point set represented by a matrix A ∈ Rn×d. Given
ε, β > 0, set

d0 := 4 + 2β
ε2/2− ε3/3 log n.

For any integer d′ ≥ d0, let R ∈ Rd×d′ be a random matrix, where each entry rij is
drawn from the following probability distribution:

rij =

+1 with probability 1/2
−1 with probability 1/2.

Let E = 1√
d
AR and let f : Rd → Rk map the ith row of A to the ith row of E. Then,

with probability at least 1− n−β, for all x, y ∈ P :

(1− ε)||x− y||2 ≤ ||f(x)− f(y)||2 ≤ (1 + ε)||x− y||2.

If one wants to obtain a result exactly like Theorem 52, i.e., one wishes to approximate
the distances between all pairs of points up to a factor of ±ε, then the target dimension
Θ(ε−2 log n) in the Johnson Lindenstrauss lemma is proven to be nearly tight.

How can we use Theorem 52 in the context of the k-means problem? We do this
by using an alternative characterization of the k-means cost function. The following
lemma states that we can express the optimal 1-means cost of a point set as a function
of the pairwise distances of the points in the set.

Lemma 54. Let P ⊂ Rd be a finite point set with centroid µ(P ). It holds that

dist2(P, µ(P )) = 1
2|P |

∑
x∈P

∑
y∈P
||x− y||2.

Proof. We show the inequality backwards. For that, we the inner sum ∑
y∈P ||x− y||2

as the clustering of P with center x and can then apply Lemma 39. This yields that

1
2|P |

∑
y∈P

∑
x∈P
||x− y||2 = 1

2|P |
∑
x∈P

∑
y∈P
||y − µ(P )||2

+ |P | · ||x− µ||2


= 1
2
∑
y∈P
||y − µ(P )||2 + 1

2|P |
∑
x∈P
|P | · ||x− µ||2

=
∑
y∈P
||y − µ||2 = dist2(P, µ(P )),

and that is what we wanted to show.
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Now we want to relate Lemma 54 to the k-means cost function. Notice that we can
do that as long as the centers are centroids of the induced clustering. To account for
this detail, we define the following variation of the k-means problem.

Definition 55. Given a point set P and a number k ∈ N≥1, we define the partition-
based k-means problem as the task to find a partitioning P1, . . . , Pk of P (i.e., ∪ki=1Pi =
P and Pi ∩ Pj = ∅ for all i, j ∈ [k] with i 6= j) that minimizes

dist2((Pi)ki=1) :=
k∑
i=1

dist2(Pi, µ(Pi)).

The partition-based k-means problem has a restricted set of possible solutions com-
pared to the general k-means problem. For solving the problem optimally, this dis-
tinction is irrelevant: Because of Lemma 39, the centers of any optimal solution are
the centroids of the clustering that they induce. We differentiate the two problems
because in the following lemma, we want to claim that projecting points with a JL
projection approximately preserves the cost of any possible solution. This is true for
the partition-based k-means problem, but not necessarily for the k-means problem.

Lemma 56. Let P ⊂ Rd be a point set with n points and let ε ∈ (0, 1) and d′ ≥
d0(n, ε) for the d0 ∈ Θ(ε−2 log n) arising from Theorem 52. There exists a linear map
f : Rd → Rd′ such that for all possible partitionings P1, . . . , Pk of P ,

| dist2((Pi)ki=1)− dist2((f(Pi))ki=1)| ≤ ε · dist2((Pi)ki=1),

where f(Pi) := {f(x) | x ∈ P}.

Proof. We apply Theorem 52 with precision parameter ε, gaining that there exists a
map f : Rd → Rd0(n,ε) such that (1− ε)||x− y||2 < ||f(x)− f(y)||2 < (1 + ε)||x− y||2
holds for all x, y ∈ P , or, equivalently, it holds for all x, y ∈ P that∣∣∣||x− y||2 − ||f(x)− f(y)||2

∣∣∣ ≤ ε · ||x− y||2. (3.4)

Now we observe that

dist2((Pi)ki=1) =
k∑
i=1

∑
x∈Pi

||x− µ(Pi)||2 Lemma 54=
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

||x− y||2,

and similarly,

dist2((f(Pi))ki=1) =
k∑
i=1

1
2|f(Pi)|

∑
a∈f(Pi)

∑
b∈f(Pi)

||x− y||2

=
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

||f(x)− f(y)||2.

Thus, the difference between the two cost functions can be bounded in the following
way:

| dist2((Pi)ki=1)− dist2((f(Pi))ki=1)|
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=

∣∣∣∣∣∣
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

||x− y||2 −
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

||f(x)− f(y)||2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

(||x− y||2 − ||f(x)− f(y)||2)

∣∣∣∣∣∣
≤

k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

∣∣∣||x− y||2 − ||f(x)− f(y)||2
∣∣∣

≤
k∑
i=1

1
2|Pi|

∑
x∈Pi

∑
y∈Pi

ε · ||x− y||2 = ε · dist2((Pi)ki=1),

where the last inequality follows from Inequality (3.4) above.

Lemma 56 says that we can project any point set P with n points to a d0(n, ε)-
dimensional space without losing much in the k-means cost function. This can be
used for many different purposes; the first one is to reduce the running time of an
algorithm for the k-means problem.

JL-dimred-k-means(P ⊂ Rd, k ∈ N≥1, ε ∈ (0, 1
2))

1. Compute ε′ = ε/6α and d′ := d0(n, ε′) (according to Theorem 52)
2. Compute f : Rd → Rd′ and f(P ) ⊂ Rd′ (according to Theorem 52)
3. Use an α-approximation algorithm for the partition-based k-means problem

on f(P ) to obtain a partitioning (fi)ki=1 of f(P )
4. Translate (fi)ki=1 into the partitioning (Pi)ki=1

where Pi = {x | f(x) ∈ fi} ∀i ∈ [k]
5. Return (Pi)ki=1

Corollary 57. Algorithm JL-dimred-k-means computes an (α + ε)-approximation
for the partition-based k-means problem with constant probability.

Proof. We assume that the randomized algorithm was successful in producing a map-
ping with the desired properties. Let P ∗1 , . . . , P ∗k be an optimal solution to the partition-
based k-means problem; this happens with constant probability. By Lemma 56,

dist2((f(Pi)∗)ki=1) ≤ (1 + ε′) · dist2((P ∗i )ki=1).

Thus, the optimal cost of any solution to the partition-based k-means problem on
f(P ) costs at most (1 + ε′) · dist2(((Pi)∗)ki=1). Let f1, . . . , fk be the α-approximate
solution on f(P ) that is computed. Since it is an α-approximation, its cost is at most
(1+ε′) ·α ·dist2(((Pi)∗)ki=1). Now we translate (fi)ki=1 back and obtain the partitioning
(Pi)ki=1 of P . Again by Lemma 56, we know that

dist2(((Pi))ki=1) ≥ (1− ε′) · dist2(((fi))ki=1)

⇔ dist2(((Pi))ki=1) ≤ 1
1− ε′ · dist2(((fi))ki=1) ≤ (1 + 2ε′) · dist2(((fi))ki=1)
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where the last inequality follows from ε ≤ 1
2 . So we get that dist2(((Pi))ki=1) ≤ (1 +

2ε′) · (1 + ε′) · α · dist2(((Pi)∗)ki=1) ≤ (1 + 6ε′) · α · dist2(((Pi)∗)ki=1). Now the corollary
follows since (1 + 6ε′)α = α + 6ε′α = α + ε by our choice of ε′.

3.4.2 The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix decomposition, i.e., a way to
write A as a multiplication of matrices with beneficial properties. In contrast to other
decompositions, the SVD exists for any nonzero matrix A. We will not show this, but
concentrate on exploring the geometric properties of the SVD and its usefulness for
reducing the dimension of k-means inputs. For this, we are actually less interested in
matrix form of the decomposition, and more in the statement as given in the following
theorem.

Theorem 58 ([Wat10], Theorem 5.8.11 on page 391, and [KV09], Theorem 1.3 on
pages 163-165). Let A ∈ Rn×d be a nonzero matrix with rank r. Then there exists
an orthonormal basis v1, . . . , vd of Rd and an orthonormal basis u1, . . . , un of Rn and
positive values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 such that

A =
r∑
i=1

σiuiv
T
i .

Furthermore, it holds that

Avi =
{
σiui i = 1, . . . , r

0 i = r + 1, . . . , d and uTi A =
{
σiv

T
i i = 1, . . . , r

0 i = r + 1, . . . , n .

The vectors ui in Theorem 58 are called left singular vectors, the vectors vi are called
right singular vectors and the values σi are called singular values, which explains
the term singular value decomposition. The actual matrix decomposition arises from
writing the singular values and vectors into matrices: a diagonal matrix D ∈ Rn×d,
and two orthogonal matrices U ∈ Rn×n, V ∈ Rd×d. This is how the matrices are
constructed:

U =

 | |
u1 · · · un
| |

 , D =



σ1 · · · 0
... . . . ... 0
0 · · · σmin{n,d}

0 0


, V T =


v1
...
vd



One can now observe that for U , D and V defined in this form, it holds that

r∑
i=1

σiuiv
T
i = UDV T ,

and thus, by Theorem 58, A = UDV T .
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3.4.3 Geometric interpretation

The aim of this paragraph is to interpret the matrix

A(k) :=
k∑
i=1

σiuiv
T
i

for an k ≤ r which arises from only adding the first k summands of the SVD-based
representation of A. We will discuss this without proofs and rather recall and interpret
known facts from linear algebra.

First we look at the term σiui. From Theorem 58 we know that σiui = Avi. What
is Avi? For a matrix that arises from writing the points in the rows Avi is a vector
that has the entries xTj vi for j ∈ [n]. Recall that vi is a unit vector. Then the scalar
product xTj vi is the length of the projection of xj onto the 1-dimensional subspace
spanned by vi. So we get a vector which has the lengths of projecting all points onto
vi as its entries. Now in the sum, this vector is multiplied by vTi by a tensor product.
This means that we get a matrix, and the rows of this matrix are the actual vectors
arising from projecting the xj onto vi.

So each term σiuiv
T
i results in a matrix which contains the vectors resulting from

projecting all rows of A, i.e., all points in P , onto the direction vi. Recall that v1, . . . , vd
form an basis of Rd. Then the entries of σiui are just the ith coordinate of all points
in this basis. It thus makes sense that adding up all of them gives A. Leaving some
of the summands out means that we ignore the contribution of those basis vectors to
the points.

In comparison to an arbitrary basis, the basis v1, . . . , vd has a special property, and
that will explain why A(k) is an interesting matrix. Recall that the singular values are
ordered such that σ1 ≥ σ2 ≥ . . . ≥ σr > 0. We observe that v1, the right singular
vector belonging to σ1, maximizes the expression ||Av|| among all unit vectors v ∈ Rd.
To see this, let v be an arbitrary unit vector. We can express any unit vector v by
v = ∑d

i=1 αivi with
∑d
i=1 α

2
i = 1.1 Now we observe that

||Ax||2 =
∣∣∣∣∣∣∣∣ d∑
i=1

αiAvi

∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣∣∣∣ d∑
i=1

αiσiui

∣∣∣∣∣∣∣∣2 =
d∑
i=1

α2
iσ

2
i ||ui||2 =

d∑
i=1

α2
iσ

2
i .

This sum is maximized if α2
1 = 1 and α2

i = 0 for i 6= 1. Thus, v1 maximizes ||Ax||2
among all unit vectors, and thus it also maximizes ||Ax|| among all unit vectors.

We have argued above that Av gives a vector with the projection lengths into direction
v. Thus, ||Av||2 for any unit vector v ∈ Rd is the sum of squared projection lengths
into direction v, and this expression is maximized by v1.

Now notice that if a vector x is orthogonal to v1, then its α1 has to be zero. Thus,
among all vectors that are orthogonal to v1, v2 maximizes ||Ax||2 because α2 = 1 and
αi = 0 for i 6= 2 is the maximal choice. This argument works inductively.

1The sum of the squared coordinates is 1 because x is a unit vector and 1 = ||x||2 =∣∣∣∣∣∣∑d
i=1 αivi

∣∣∣∣∣∣2 =
∑d

i=1 α
2
i ||vi||2 =

∑d
i=1 α

2
i .
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Fact 59. It holds that

v1 = arg max
||v||=1

||Av||,

v2 = arg max
||v||=1,〈v,v1〉=0

||Av||,

...
vr = arg max

||v||=1,〈v,vi〉=0 ∀i=1,...,r−1
||Av||.

for right singular vectors v1, . . . , vr ∈ Rd as given by Theorem 58.

It is even true that a subspace which is spanned by v1, . . . , vk maximizes the sum of the
squared projection lengths of the points in A among all k-dimensional subspaces. And
this is why Ak is interesting: It is a projection of the points in A to a k-dimensional
subspace which preserves the largest part of the lengths among all projections of A
to k-dimensional subspaces. We get a k-dimensional version of the points which is as
close to A as possible. Indeed, A(k) is also the best approximation of A with respect
to the Frobenius norm among all matrices of rank k, i.e.:

Fact 60.
||A− A(k)||F = arg min

B∈Rn×d, rank(B)=k
||A−B||F .

As a final note, we state that the subspace V (k) spanned by v1, . . . , vk is also a best fit
subspace for A in the sense that it minimizes the sum of the squared distances of the
points to the subspace. This follows from the Pythagorean Theorem (Fact 5) and the
fact that V (k) maximizes the sum of the squared projection lengths.

Theorem 61 (KV09, Theorem 1.3 on pages 163+164). Find right singular vectors
vi ∈ Rd as in Theorem 59. For k ≤ d, define Vk := span{v1, . . . , vk} as the span of the
first k of these vectors. Then, Vk is a best fit subspace of dimension k, i.e.,

Vk = arg min
V⊂Rd,0∈V, dim(V )=k

n∑
i=1

dist2(xi, V ).

3.4.4 Using the SVD to compute a 2-approximation

The best fit subspace from Theorem 61 gives us a computable lower bound on the k-
means cost of a point set because the squared distances to k centers cannot be larger
than the squared distances to a subspace of dimension k.

Lemma 62. Let P := {x1, . . . , xn} ⊂ Rd be a set of points, and let Vk be a best fit
subspace for P (see Theorem 61). Then

n∑
i=1

dist2(xi, Vk) = dist2(P, Vk) ≤ dist2(P,C∗),

where C∗ is an optimal solution for the k-means problem on P .
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Proof. See tutorial (problem set 9, task 2).

Drineas, Frieze, Kannan, Vempala and Vinay [DFK+04] use Lemma 62 to speed up
algorithms for the k-means problem by using dimensionality reduction. Their key
observation is that the k-means cost can be decomposed by the Pythagorean theorem,
and then the two terms can be bound by Lemma 62 and the following lemma.

Lemma 63. Let V be any linear subspace of Rd and for every point x ∈ Rd let
V (x) = arg miny∈V d(x, y) be the point in V closest to x. Then for any set of points
P = {x1, . . . , xn} ⊆ Rd the best k-means solution on P is at least as expensive as the
best k-means solution on {V (x1), . . . , V (xn)} in V .

Proof. See tutorial (problem set 9, task 3).

Lemma 63 is even a bit more general than the statement that we need: It says that
we can project a point set P and a center set C to any subspace V , and this will only
decrease the distances between the P and C. In the following algorithm, the projection
is to a specific subspace, namely Vk. Projecting to Vk means that we replace A by A(k)

which we discussed in Section 3.4.3: it is the orthogonal projection of A to Vk.

SVD-constant-dim-red(P ⊂ Rd, k ∈ N≥1)

1. Store P in matrix A
2. Compute the SVD of A and compute A(k), interpret this as point set P (k) ⊂ Rd

3. Apply an α-approximation for the k-means problem to (P (k),k)
to get a center set C ⊂ Rd

4. Return C

Notice that the point set P (k) is still a set of points in Rd. However, its intrinsic
dimension is bounded by k. In order to profit from the lower intrinsic dimension,
it might be necessary to actually compute a k-dimensional representation of P (k),
depending on the algorithm that is used in line 3., and then translate the result back
to Rd.

Algorithm SVD-constant-dim-red can be combined with an optimal algorithm (i.e.,
α = 1), and the resulting algorithm will have a running time that depends polyno-
mially on d since d only influences the running time of the SVD computation. (And
computing the SVD is possible in polynomial time.) It can also be combined with any
approximation algorithm.

Theorem 64. The center set C computed by algorithm SVD-constant-dim-red is a
(α + 1)-approximate solution for the k-means problem on (P ,k).

Proof. By the Pythagorean theorem, we can decompose the cost of P with the solution
C computed by the algorithm as:

dist2(P,C) = dist2(P, Vk) + dist2(P (k), C),
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where we recall that P (k) is the projection of P to Vk computed in the 2. step of
Algorithm SVD-constant-dim-red (notice that C ⊂ Vk and that the vector between
a point and its projection is orthogonal to any vector in Vk, i.e., also to the vector
from the point’s projection to its closest center in C).

The first term is bounded by Lemma 62. For the second term, let C∗ be an optimal
solution for the k-means problem on P , k, and let C∗k be an optimal solution for the
k-means problem on P (k), k. By Lemma 63, dist2(P (k), C∗k) ≤ dist2(P,C∗). Since C
is an α-approximation, we have dist2(P (k), C) ≤ α dist2(P,C∗), which overall leads to
dist2(P,C) = dist2(P, Vk) + dist2(P (k), C) ≤ (α+ 1) · dist2(P,C∗). That completes the
proof.

Further chapters are under construction and will be
inserted when ready!
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