MA-INF 1203 Discrete and Computational Geometry

Wintersemester 2019/20 Assignment 13

Deadline: 28 January before noon (To be discussed: 28/29. January 2020)

1 Shatter function lemma

Show that the shatter function lemma is tight. That is, for all δ and n construct a range space of VC dimension δ on n points with $\Phi_{\delta}(n)$ sets.

2 The ε -net theorem

- a) In the proof of the ε -net theorem, show that $\Pr[E_1] \leq \Phi_{\delta}(2s) \cdot 2^{-\frac{s}{2r}}$.
- b) Show that for a sufficiently large constant c, a random sample of size $s = c \cdot \delta \cdot r \log \left(\frac{r}{\phi} \right)$ is a $\frac{1}{r}$ -net with probability 1ϕ .

3 Range spaces defined by graphs

Let G = (V, E) be an undirected graph.

- a) Let (V, \mathcal{R}) be the range space where $S \in \mathcal{R}$ is the set of vertices on a shortest path in G. Show that the VC dimension is 2 if shortest paths are unique.
- b) Let (V, \mathcal{N}) be the range space where $\mathcal{N} = \{N_G(v) : v \in V(G)\}$ is the system of vertex neighborhoods (where $N_G(v) = \{u \in V(G) : \{u,v\} \in E(G)\}$). Show that the VC dimension is bounded if G is planar.

4 Dual range spaces

Analyze the VC dimension of the dual range spaces of

- a) halfspaces in \mathbb{R}^d ,
- b) disks in \mathbb{R}^2 .