

Algorithms and Uncertainty

Winter Term 2025/26

Exercise Set 13

If you would like to present one of your solutions in class, please use the following link to book a presentation slot by Monday evening:

<https://terminplaner6.dfn.de/b/65c21a60547aa92c10a24a892eaa23ec-1567582>

A short meeting to discuss your solution is mandatory before presenting it in class. To book a time slot for this meeting, please use the following link by Monday evening as well:

<https://terminplaner6.dfn.de/b/bad25224e19d243611df4e1b9cb8c474-1567585>

Exercise 1:

(3 Points)

Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R} : \mathbf{x} \mapsto \mathbf{x}^T \mathbf{x}$. Show that f is convex.

Exercise 2:

(3 Points)

Let \mathcal{X} be a convex set. Prove the following statement: If a function $f : \mathcal{X} \rightarrow \mathbb{R}$ is convex, then any local minimum of f in \mathcal{X} is also a global minimum.

Exercise 3:

(5 Points)

Show that Follow-the-Regularized-Leader with Entropirical regularization in the experts setting is equivalent to the Multiplicative Weights algorithm.

Hint: It can be helpful to use a Lagrange multiplier, which works in this special case as follows: For \mathbf{x} to be a local optimum of F subject to $\sum_{i=1}^d x_i = 1$, it is necessary that there exists a $\lambda \in \mathbb{R}$ such that $\frac{\partial F}{\partial x_i}(\mathbf{x}) - \lambda = 0$ for all i .