Algorithms and Uncertainty

Winter Term 2025/26 Tutorial Session - Week 7

Exercise 1:

Consider the following distribution for the prize of box i: the prize v_i is equal to w_i with probability q_i and is 0 else. Assume that $\mathbb{E}[v_i] \geq c_i \geq 0$. Compute the fair cap.

Exercise 2:

Consider the minimization variant of Pandora's Box. We have n boxes. Each of the boxes contains an item of certain weight. We may open as many boxes as we like, however opening box i costs a certain amount. We have to take home one item and we need to open the box before taking the item. We may adapt our choices depending on what we find in the boxes that we open.

More formally, box i contains an item of weight w_i . We don't know w_i but only its distribution until we open the box. Opening box i costs c_i . The final weight is given as

$$\min_{i:\text{box }i\text{ opened}} w_i + \sum_{i:\text{box }i\text{ opened}} c_i.$$

We define the fair cap σ_i such that $\mathbb{E}[b_i] + c_i = 0$, where $b_i = w_i - \kappa_i$ is the bonus and $\kappa_i = \max\{\sigma_i, w_i\}$ is the capped value.

Adapt the *fair cap* policy from the lecture appropriately and show that it is optimal for the minimization variant of Pandora's box.

You can use, without proof, that the value of any policy is again given by

$$V(\pi) = \mathbf{E}\left[\sum_{i} A_{i} \kappa_{i} - (I_{i} - A_{i})b_{i}\right],$$

where I_i indicates if the policy opens box i and A_i indicates, if the policy accepts the value in box i.