Inhalt

1 Grundlagen 1
 1.1 Einführung 1
 1.2 Ein paar Grundbegriffe 6
 1.2.1 Topologie 6
 1.2.2 Graphentheorie 12
 1.2.3 Geometrie 21
 1.2.4 Komplexität von Algorithmen 29
 1.2.5 Suchbäume 36
 1.2.6 Untere Schranken 39
 Lösungen der Übungsaufgaben 49
 Literatur .. 57

2 Das Sweep-Verfahren 61
 2.1 Einführung 61
 2.2 Sweep im Eindimensionalen 62
 2.2.1 Das Maximum einer Menge von Objekten 62
 2.2.2 Das dichteste Paar einer Menge von Zahlen 63
 2.2.3 Die maximale Teilsumme 64
 2.3 Sweep in der Ebene 67
 2.3.1 Das dichteste Punktepaar in der Ebene 67
 2.3.2 Schnittpunkte von Strecken 74
 2.3.3 Die untere Kontur — das Minimum von Funktionen 89
 2.3.4 Der Durchschnitt von zwei Polygonen 99
 2.4 Sweep im Raum 103
 2.4.1 Das dichteste Punktepaar im Raum 103
 Lösungen der Übungsaufgaben 107
 Literatur .. 115

3 Geometrische Datenstrukturen 117
 3.1 Einführung 117
 3.2 Mehrdimensionale Suchbäume 120
<table>
<thead>
<tr>
<th>3.2.1</th>
<th>Der KD–Baum</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Symbolische Perturbation von Punkten in spezieller Lage</td>
<td>127</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Der Bereichsbaum</td>
<td>131</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Der Prioritätssuchbaum</td>
<td>135</td>
</tr>
<tr>
<td>3.2.5</td>
<td>KD–Bäume für höherdimensionale Daten*</td>
<td>141</td>
</tr>
<tr>
<td>3.3</td>
<td>Dynamische Datenstrukturen</td>
<td>144</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Wegwerfdynamisierung</td>
<td>145</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Die logarithmische Methode*</td>
<td>148</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Anwendungen der logarithmischen Methode*</td>
<td>157</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Ausgewogene Suchbäume*</td>
<td>160</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Anwendungen ausgewogener Suchbäume*</td>
<td>166</td>
</tr>
<tr>
<td>Lösungen der Übungsaufgaben</td>
<td>169</td>
<td></td>
</tr>
</tbody>
</table>

Literatur | 175 |

4 Durchschnitte, Zerlegungen und Sichtbarkeit | 177 |

4.1 Die konvexe Hülle ebener Punktmengen | 177 |
4.1.1 Präzisierung des Problems und untere Schranke	178
4.1.2 Inkrementelle Verfahren	181
4.1.3 Ein einfaches optimales Verfahren	189
4.1.4 Der Durchschnitt von Halbebenen	192

4.2 Triangulationen einfacher Polygone | 197 |

4.3 Die Trapezzerlegung geometrischer Graphen | 204 |
4.3.1 Das Problem der Punktlokalisierung	204
4.3.2 Die Trapezzerlegung	206
4.3.3 DAGs zur Punktlokalisierung	207
4.3.4 Zu erwartende Kosten	212
4.3.5 Kosten mit hoher Wahrscheinlichkeit*	214
4.3.6 Schnelle Triangulierung einfacher Polygone*	218

4.4 Das Sichtbarkeitspolygon | 224 |
4.4.1 Verschiedene Sichten im Inneren eines Polygons	225
4.4.2 Das Kunstgalerie-Problem	227
4.4.3 Die VC-Dimension einer Kunstgalerie*	230

4.5 Der Kern eines einfachen Polygons | 237 |
| 4.5.1 Die Struktur des Problems | 238 |
| 4.5.2 Ein optimaler Algorithmus | 244 |

Lösungen der Übungsaufgaben | 247 |

Literatur | 255 |

5 Voronoi-Diagramme | 257 |

5.1 Einführung | 257 |

5.2 Definition und Struktur des Voronoi-Diagramms | 259 |

5.3 Anwendungen | 266 |
<p>| 5.3.1 Das Problem des nächsten Postamts | 267 |
| 5.3.2 Die Bestimmung aller nächsten Nachbarn | 267 |
| 5.3.3 Der minimale Spannbaum | 269 |</p>
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4 Der größte leere Kreis .. 272</td>
</tr>
<tr>
<td>5.4 Die Delaunay-Triangulation .. 277</td>
</tr>
<tr>
<td>5.4.1 Definition und elementare Eigenschaften 277</td>
</tr>
<tr>
<td>5.4.2 Die Maximalität der kleinsten Winkel 280</td>
</tr>
<tr>
<td>5.5 Zwei Variationen .. 284</td>
</tr>
<tr>
<td>5.5.1 Die Manhattan-Metrik L_1 284</td>
</tr>
<tr>
<td>5.5.2 Das Voronoi-Diagramm von Strecken 285</td>
</tr>
<tr>
<td>5.5.3 Planung kollisionsfreier Bahnen für Roboter 291</td>
</tr>
<tr>
<td>Lösungen der Übungsaufgaben .. 297</td>
</tr>
<tr>
<td>Literatur ... 303</td>
</tr>
<tr>
<td>6 Berechnung des Voronoi-Diagramms 305</td>
</tr>
<tr>
<td>6.1 Die untere Schranke .. 306</td>
</tr>
<tr>
<td>6.2 Inkrementelle Konstruktion .. 308</td>
</tr>
<tr>
<td>6.2.1 Aktualisierung der Delaunay-Triangulation 308</td>
</tr>
<tr>
<td>6.2.2 Lokalisierung mit dem Delaunay-DAG 313</td>
</tr>
<tr>
<td>6.2.3 Randomisierung ... 318</td>
</tr>
<tr>
<td>6.3 Sweep .. 322</td>
</tr>
<tr>
<td>6.3.1 Die Wellenfront .. 323</td>
</tr>
<tr>
<td>6.3.2 Entwicklung der Wellenfront .. 326</td>
</tr>
<tr>
<td>6.3.3 Der Sweep-Algorithmus für $V(S)$ 327</td>
</tr>
<tr>
<td>6.4 Divide-and-Conquer .. 330</td>
</tr>
<tr>
<td>6.4.1 Mischen von zwei Voronoi-Diagrammen 331</td>
</tr>
<tr>
<td>6.4.2 Konstruktion von $B(L, R)$.. 333</td>
</tr>
<tr>
<td>6.4.3 Das Verfahren divide-and-conquer für $V(S)$ 338</td>
</tr>
<tr>
<td>6.5 Geometrische Transformation .. 340</td>
</tr>
<tr>
<td>Lösungen der Übungsaufgaben .. 345</td>
</tr>
<tr>
<td>Literatur ... 351</td>
</tr>
<tr>
<td>7 Weiterführende Ergebnisse .. 353</td>
</tr>
<tr>
<td>7.1 Nichteuklidische Abstandsmaße für Punkte 353</td>
</tr>
<tr>
<td>7.1.1 Konvexe Distanzfunktionen ... 354</td>
</tr>
<tr>
<td>7.1.2 Metriken ohne Translationsinvarianz 358</td>
</tr>
<tr>
<td>7.1.3 Additive und multiplikative Gewichte 360</td>
</tr>
<tr>
<td>7.1.4 Power-Diagramme ... 366</td>
</tr>
<tr>
<td>7.1.5 Diagramme höherer Ordnung .. 367</td>
</tr>
<tr>
<td>7.1.6 Die Drehdistanz ... 369</td>
</tr>
<tr>
<td>7.2 Abstrakte Voronoi-Diagramme* ... 371</td>
</tr>
<tr>
<td>7.2.1 Definitionen und Axiome .. 371</td>
</tr>
<tr>
<td>7.2.2 $V(S)$ als Punktmenge .. 373</td>
</tr>
<tr>
<td>7.2.3 $V(S)$ als Graph .. 378</td>
</tr>
<tr>
<td>7.2.4 Konstruktion von $V(S)$.. 382</td>
</tr>
<tr>
<td>7.2.5 Anwendungen und Variationen .. 384</td>
</tr>
<tr>
<td>7.3 Approximative Suche mit dem LKD–Baum* 385</td>
</tr>
<tr>
<td>7.3.1 Die Baumstruktur .. 386</td>
</tr>
</tbody>
</table>
7.3.2 Bereichsanfragen mit Rechtecken und Quadraten 387
7.3.3 Approximative Bereichsanfragen mit Kreisen 390
7.3.4 Nächste-Nachbarn-Suche 392
7.3.5 Dynamisierung 397
7.3.6 Alternativen zum LKD–Baum 398

7.4 Flächenfüllende Kurven* 399
7.4.1 Hüllkörperhierarchien 399
7.4.2 Pólyas dreieckfüllende Kurve 400
7.4.3 Dehnungskonstante 404
7.4.4 Anfragen in der Hüllkörperhierarchie 406
7.4.5 Approximation der kürzesten Rundreise 409
7.4.6 Weitere Kurven und Anwendungen 411

7.5 Ähnlichkeitsberechnung von polygonalen Kurven in der Ebene 412
7.5.1 Definitionen von Ähnlichkeit 413
7.5.2 Fréchet-Abstand — das Entscheidungsproblem 416
7.5.3 Fréchet-Abstand — das Optimierungsproblem* 420
7.5.4 Hausdorff-Abstand* 425

7.6 Bewegungsplanung bei unvollständiger Information 428
7.6.1 Ausweg aus einem Labyrinth 430
7.6.2 Suchtiefenverdopplung — eine kompetitive Strategie 438
7.6.3 Optimalität* 442
7.6.4 Suchen in einfachen Polygones 448

7.7 Inzidenzen 457
7.7.1 Kreuzungszahl und Satz von Szemerédi-Trotter 458
7.7.2 Satz von Sylvester 460
7.7.3 Verbindungen von Geraden im Raum* 460

Lösungen der Übungsaufgaben 467
Literatur 485

Index 491