
Algorithms and Uncertainty, Winter 2018/19 Lecture 6 (4 pages)

Markov Decision Processes

Instructor: Thomas Kesselheim

As a motivation, consider the following game: There are n envelopes. Envelope i contains
prize vi ≥ 0 with probability qi ∈ [0, 1]. With probability 1 − qi it is empty. You may open
envelopes and keep the prizes as long as you do not open an empty envelope.

What is the best strategy to play this game? One might be tempted to act myopically:
Open the envelope of highest expected reward qi · vi. This is, for example, a bad idea in the
following setting:

v1 = 1000, q1 =
1

100
, vi = qi = 1 for i > 1 .

Here, we would open envelope 1 first but with 99 % chance, we do not get anything. It is much
better to first open envelopes 2, . . . , n and only then to take the chance and open envelope 1.

Today’s goal will be to introduce a general model for such stochastic decision problems, to
describe optimal policies and give algorithms to compute them.

1 Markov Decision Processes

A Markov Decision Process is defined by a set of states S, a set of actions A, a reward function
that defines a reward ra(s) for taking action a ∈ A in state s ∈ S and a random transition
function, which is defined by probabilities pa(s, s

′): If we are in state s ∈ S and we take action
a ∈ A, then we move on to state s′ ∈ A with probability pa(s, s

′) ∈ [0, 1].
The process works as follows. We start from state s1 ∈ S, choose one action a ∈ A. We

immediately get reward ra(s) ∈ R and then continue to a random state s′, which is given by
the probability distribution pa(s1, ·). This way, a sequence s1, s2, . . . evolves. We move from
st to st+1 by the probability distribution pa(st, ·). So, the probabilities only depend on the
current state and the current action but not on which states we have seen before. This makes
the process Markovian.

Generally, rewards may also be random, just as in our example above. To capture this, set
ra(s) to the expected reward that you get when taking action a in state s.

On the one hand, this generalizes a deterministic finite automaton. Here, for each a and s,
there is exactly one s′ for which pa(s, s

′) = 1 and pa(s, s
′) = 0 otherwise. On the other hand,

it is also a generalization of a Markov chain. Here, A has only one element (an action like
“continue”) and the we move through states without having a real choice.

Example 6.1. Let us define the Markov decision process for the motivating example with the
envelopes. In the state, we have to keep track which envelopes were opened so far and if any of
them was empty. This is done by S = 2[n] ∪ {stop}, where [n] = {1, . . . , n}.

Each action corresponds to opening an envelope. Therefore, A = [n]. Let us define the state
transitions. For s ∈ 2[n], we set pa(s, s ∪ {a}) = qa and pa(s, stop) = 1 − qa for all a ∈ [n].
Furthermore, pa(stop, stop) = 1 to ensure that we remain in state stop once an envelope was
empty. All other probabilities are set to 0.

The reward from opening an envelope is the expected prize inside, so ra(s) = qa · va for
s ∈ 2[n] with a 6∈ s.

In principle, in any state, any action may be performed. So, we cannot forbid a policy to
open an envelope twice. We can only penalize this is terms of rewards, for example by setting
ra(s) = −∞ if s ∈ 2[n], a ∈ s. Also in state stop, the actions are still available although no



Algorithms and Uncertainty, Winter 2018/19 Lecture 6 (page 2 of 4)

more envelopes may be opened. By setting ra(stop) = 0 for all a ∈ A, effectively these actions
do not matter.

2 Policies and Their Structure

A policy π assigns to each sequences of states s1, . . . , st−1 ∈ S an action π(s1, . . . , st−1) ∈ A.
So, if we run policy π starting from s1, we pass through a random sequence of states sπ1 , s

π
2 , . . .,

using a random sequence of actions aπ1 , a
π
2 , . . ..

Generally, we can move through a Markov decision process for unbounded time. We will
first focus on the case of a finite time horizon. That is, there is some T such that we do not
care what happens after time T . In this case, we can write the expected reward of policy π
when starting at s1 as

V (π, s1, T ) = E

[
T∑
t=1

raπt (sπt )

]
.

We also define V ∗(s1, T ) as the highest expected reward that one can achieve starting from s1
in T steps, that is, V ∗(s1, T ) = maxpolicy π V (π, s1, T ). (Note that there are only finitely many
histories and therefore only finitely many different policies, so the maximum is well-defined.)

Consider an optimal policy π, that is V (π, s1, T ) = V ∗(s1, T ). As aπ1 is deterministic, we
might as well write

V (π, s1, T ) = raπ1 (s1) + E

[
T∑
t=1

raπt (sπt )

]
= raπ1 (s1) +

∑
s′∈S

paπ1 (s1, s
′)E

[
T∑
t=2

raπt (sπt )

∣∣∣∣∣ sπ2 = s′

]
.

Let us inspect the expectation on the right-hand side. We claim that

E

[
T∑
t=2

raπt (sπt )

∣∣∣∣∣ sπ2 = s′

]
= V ∗(s′, T − 1) .

The reason is simple: Both is the maximum expected reward that we would receive from a
Markov decision process running for T − 1 steps, starting from s. On the left-hand side, we
actually start from s1 but this does not make a difference for the remaining steps. Importantly,
rewards in the current step only depend on the current state and action, not on the past ones.

We skip the fleshed out formal argument here. One possible way is to assume that either
side is strictly larger than the other and observe that one could either add or remove s1 from
the beginning of the history.

Consequently, we can define V ∗(s, T ) recursively as

V ∗(s, T ) = max
a∈A

(
ra(s) +

∑
s′∈S

pa(s, s
′)V ∗(s′, T − 1)

)
. (1)

These observations directly lead to the following theorem:

Theorem 6.2. For finite time horizons, there is an optimal policy that is Markovian. That is,
actions only depend on the current state and the number of remaining steps. An optimal policy
for a time horizon of T steps can be computed in time O(T · |S|2 · |A|).

Proof. We can compute an optimal policy by dynamic programming. We have to compute T ·|S|
values of V ∗ in total, each computation takes |S| · |A| steps. By tracing back the generation of
V ∗, we get a policy that is Markovian.



Algorithms and Uncertainty, Winter 2018/19 Lecture 6 (page 3 of 4)

3 Motivating Example

Let us come back to our initial example with the envelopes. Our goal is to derive an optimal
policy. The time horizon will be T = n because, in principle, all envelopes can be opened.

Based on our results on Markov decision processes, we can understand policies in a much
more structured way. In particular, we immediately observe that a policy defines nothing but
an order (i.e. a permutation) in which to open the envelopes as long as none was empty.

Consider an optimal policy π∗. If the order that π∗ uses, i comes directly before j (meaning
that it opens envelope i always before j), then the following has to hold. Let s be the set of
indices of envelopes opened before i. Applying Equation (1) twice, we get

V ∗(s, T ) = V (π∗, s, T ) = qivi + qiV
∗(s ∪ {i}, T − 1)

= qivi + qi(qjvj + qjV
∗(s ∪ {i, j}, T − 2)) .

It would also be feasible policy π to first open j, then i, and then continue according to π∗.
This would give expected reward

V (π, s, T ) = qjvj + qj(qivi + qiV
∗(s ∪ {i, j}, T − 2)) ,

because we only have to swap i and j in the previous expression. As π∗ is optimal, we have
V (π∗, s, T ) ≥ V (π, s, T ), and therefore

qivi + qi(qjvj + qjV
∗(s ∪ {i, j}, T − 2)) ≥ qjvj + qj(qivi + qiV

∗(s ∪ {i, j}, T − 2)) ,

which is equivalent to
qivi

1− qi
≥ qjvj

1− qj
.

Consequently, it is optimal to open to envelopes by non-increasing qivi
1−qi . The optimal policy is

unique up to breaking these ties (and choosing the action from stop, which is irrelevant).

4 A Stochastic Model for Ski Rental

In our first lecture we introduced a stochastic model for the Ski Rental problem. We defined it
such that there are T days; each day is a skiing day with probability q. We can buy skis once
at a cost of B or rent them for a day at a cost of 1. This is, indeed also a very simple Markov
decision process.

One potential way to model it is as follows. We have three states skiing, not-skiing,
bought. There are two actions, rent and buy.

• In state skiing, action rent has a reward to −1 and makes us transition to skiing with
probability q and to non-skiing with probability 1− q. Action buy has a reward of −B
and makes us transition to bought.

• In state non-skiing, both actions have no reward. They make us transition to skiing
with probability q and to non-skiing with probability 1− q.

• In state bought, every action always keeps us in bought and has no reward.

There is a small technicality: The starting state is always deterministic. However, we would
like it to be random. To this end, we add a day 0 as a non-skiing day.

Crucially, the optimal policy is Markovian. This means that its choices only depend on the
current state and how many steps are left. It is irrelevant how we came to this point.



Algorithms and Uncertainty, Winter 2018/19 Lecture 6 (page 4 of 4)

T

C(T )

B

τ

Figure 1: Values of C(T ) for B = 10, q = 1
10 . Right of τ , the function asymptotically approaches

B (but never actually reaches it).

To derive the optimal policy, we only have to understand under which circumstances it
chooses buy in state skiing. Generally, it is possible to derive this from Equation (1): We
would like to understand for which choices of T is the maximum (meaning the smaller cost)
attained by a = buy if s = skiing. However, one easily gets lost in notation.

We switch from maximizing rewards to minimizing costs and let C(T ) denote the expected
cost on a sequence of n days (not counting day zero). The key observation is that if the policy
does not buy skis on the first day, it will face the exact same decision process with T − 1 steps.
For this reason

C(T ) =

{
q(C(T − 1) + 1) + (1− q)C(T − 1) if optimal policy buys in (skiing, T )

qB + (1− q)C(T − 1) otherwise

The algorithm ALG∗ is defined to choose the cheaper of the two options. So

C(T ) = qmin{C(T − 1) + 1, B}+ (1− q)C(T − 1) .

Let us understand this recursion. We start from C(0) = 0. Initially, we will have C(T −
1) + 1 ≤ B and so C(T ) = C(T − 1) + q, which means C(T ) = qT for the first values of T . At
some point τ we have C(T − 1) + 1 > B for the first time. More precisely, this is the smallest

τ such that q(τ − 1) + 1 > B, which is τ =
⌊
B−1
q + 2

⌋
.

Note that C(T − 1) + 1 > B to be true for larger T . That is, for all T ≥ τ , we have
C(T ) = qB + (1− q)C(T − 1).

One can solve this recursion further from here (see Figure 1 for the solution). However, this
is not necessary to derive the optimal policy. Recall that the minimum in the recursion comes
from the choice of the policy on the first day. We now know that in (skiing, T ), the optimal
policy will buy the skis if T ≥ τ and rent them otherwise. An interesting consequence is that
the optimal policy will never first rent and then buy.


